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In the last two lectures we’re learned how to solve homogeneous linear
differential equations with constant coefficients. In other words, equations
of the form

any(n) + an−1y
(n−1) + an−2y

(n−2) + · · ·+ a1y
′ + a0y = 0,

where ai ∈ R. We’ve also looked at a mechanical application of these
types of equations; the mass-spring-dashpot system.

Today, we’re going to talk about nonhomogeneous linear differential
equations with constant coefficients. So, equations of the form

any(n) + an−1y
(n−1) + an−2y

(n−2) + · · · + a1y
′ + a0y = f(x),

where f(x) 6= 0. We’ll learn how to solve these in particular cases
that come up frequently, and we’ll touch upon the idea behind the general
solution.

Today’s lecture corresponds with section 3.5 of the textbook, and the
exercises for this section are

Section 3.5 - 1, 11, 23, 28, 35, 47, 56.

Note that I’ve assigned more problems than usual for this section be-
cause I think the best way to understand this material is to work a number
of problems, as compared to memorizing theorems and concepts.
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Nonhomogeneous Linear Differential Equations with Con-

stant Coefficients

Up to this point we’ve dealt almost exclusively with homogeneous linear
equations:

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0.

Now, we’re going to take a look at what we get when we add a “driving
force”, a.k.a. a nonhomogeneous term, to the right side of our equation:

any(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = f(x).

We’ve learned that, in general, if we have a homogeneous nth-order
linear differential equation (whether with constant coefficients or not) that
“all” we have to do is solve the homogeneous equation to get n linearly
independent homogeneous solutions:

yh = c1y1 + · · · + cnyn,

and then find a particular solution to the nonhomogeneous solution
yp.1 If you’ve got these, then the general solution is of the form:

y = yp + yh.

where the ck in yh are determined by initial conditions.

Finding the homogeneous solution is, in general, a very difficult thing
to do, and finding a particular solution is also, in general, a hard thing to
do. However, we have learned how to find the homogeneous solution in
the special case of constant coefficients. Today we’ll learn a method for
finding a particular solution to the nonhomogeneous equation, once we
know the general solution to the corresponding homogeneous equation.

1Note that in the textbook sometimes the homogeneous solution is called the comple-
mentary solution, and is written as yc.
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The method, while it can be codified and made rigorous, is best under-
stood as a few rules that we need to apply, and I think these rules are best
understood in the context of a few examples.

First, suppose we have a differential equation of the form

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = f(x)

where f(x) is a polynomial of degree m. In this situation we “guess”
that our particular solution will also be a polynomial of degree m:

yp = Amxm + Am−1x
m−1 + · · ·+ A1x + A0,

and then we plug this guess in and figure out what the coefficients
needs to be in order to make the guess correct.

Example - Find a particular solution to the differential equation:

y′′ + 3y′ + 4y = 3x + 2

Solution - We “guess” that our particular solution will be of the form:
yp = Ax + B. If we then plug this guess into the ODE we get:

yp = Ax + B,

y′

p = A,

y′′

p = 0,

and so,

0 + 3A + 4(Ax + B) = 3x + 2.

Solving this for A and B we get A =
3

4
and B = −

1

16
, and so our

particular solution is:

yp =
3

4
x −

1

16
.
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The same basic approach works if f(x) is of the form:

f(x) = Cerx,

or

f(x) = c1 sin kx + c2 cos kx.

In these cases, we guess:

yp = Aerx,

and

yp = A1 sin kx + B1 cos kx

respectively. If f(x) has any of these three types of terms multiplied to-
gether, we just guess that our solution has these terms multiplied together.
If f(x) has any of these three types of terms added together, we just guess
that our solution has these terms added together. Make sure to include all
the polynomial terms!

So, for example, if we want to guess the form of the particular solution
to the ODE:

y(3) + 9y′ = x sin x + x2e2x

we would guess:

yp = A cos x + B sin x + Cx cos x + Dx sin x + Ee2x + Fxe2x + Gx2e2x

and then calculate A, B, C, D, E, F and G appropriately. This is called
the method of undetermined coefficients.

Clear as mud? I promise it’s not that bad once you get the hang of it.
Let’s work a few examples.
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Example - Find a particular solution to the ODE

y′′ − y′ − 6y = 2 sin 3x.

Solution - As our inhomogeneous terms is a sum of sines and cosines,
our “guess” will be as well:

yp = A sin 3x + B cos 3x.

Plugging this into our ODE we get:

−9A sin 3x − 9B cos 3x − 3A cos 3x + 3B sin 3x − 6A sin 3x − 6B cos 3x =
2 sin 3x.

Grouping the sine and cosine terms together we get:

(−15A + 3B) sin 3x + (−15B − 3A) cos 3x = 2 sin 3x.

This gives us the linear equations:

−15A + 3B = 2

−3A − 15B = 0.

Solving these for A and B we get A = −
5

39
, and B =

1

39
. So, our

particular solution is:

yp = −
5

39
sin 3x +

1

39
cos 3x.
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Example - Find a particular solution of the ODE:

y′′ − 4y = 2e3x.

Solution - Our inhomogeneous term is 2e3x, so we’ll “guess” our partic-
ular solution is of the form:

yp = Ae3x.

Plugging this into the ODE we get:

9Ae3x − 4Ae3x = 2e3x.

So, 5A = 2, or A =
2

5
, and we get the particular solution:

yp =
2

5
e3x.
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Now, there’s a potential snag that we occasionally hit with this method.
We can illustrate this with an example. Suppose we want to solve the ODE

y′′ − 4y = 2e2x,

which is superficially quite similar to our last example. If we try yp =
Ae2x we get:

4Ae2x − 4Ae2x = 2e2x

which won’t work, as this is just 0 = 2e2x. Uh oh! What do we do? The
problem here is that our guess is not linearly independent of our homoge-
neous solutions. What we do in this case is we just multiply our guess by
x until we get a linearly independent guess.

In this case we would guess yp = Axe2x and then solve for A to get
yp = (1/2)xe2x, making the general form of our solution:

y =
1

2
xe2x + c1e

2x + c2e
−2x.

So, if any of the terms in our “guess” are not linearly independent of
the solutions to the homogeneous equation we multiply the corresponding
terms in the guess by x until they are. Let’s do another example.
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Example - Find a particular solution to

y(3) + y′′ = 3ex + 4x2.

Solution - As the inhomogeneous term is the sum of an exponential
and a second-degree polynomial, we’d first “guess” that our particular
solution is of the form:

yp = Aex + Bx2 + Cx + D.

However, the characteristic equation for the corresponding homoge-
neous ODE is r2(r + 1), which has solutions e−x, 1, and x. So, the term
Cx + D in our “guess” won’t work, and we need to multiply the polyno-
mial part by x2 to make all the terms linearly independent:

yp = Aex + Bx4 + Cx3 + Dx2.

If we plug this into our ODE we get:

Aex + 24Bx + 6C + Aex + 12Bx2 + 6Cx + 2D = 3ex + 4x2.

From this we get 2A = 3, 12B = 4, 24B + 6C = 0, and 6C + 2D = 0.

Solving these we get A =
3

2
, B =

1

3
, C = −

4

3
, and D = 4. So, our particular

solution is:

yp =
3

2
ex +

1

3
x4 −

4

3
x3 + 4x2.
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Finally, we need to mention that there’s a method that works, in gen-
eral, to find a particular solution to any linear ODE as long as the general
solution to the homogeneous equation is known. The book touches upon
this for the second-order case. We won’t get into the details here, but I feel
I should at least go over the formula and do an example problem.

Theorem : Variation of Parameters - If the nonhomogeneous equation
y′′ + P (x)y′ + Q(x)y = f(x) has yh(x) = c1y1(x) + c2y2(x) as the general so-
lution to the associated homogeneous equation, then a particular solution
is given by

yp(x) = −y1(x)

∫

y2(x)f(x)

W (x)
dx + y2(x)

∫

y1(x)f(x)

W (x)
dx,

where W = W (y1, y2) is the Wronskian of the two independent solu-
tions y1 and y2 of the associated homogeneous equation.

Example - Use the method of variation of parameters to find a particular
solution to the given differential equation

y′′ − 4y′ + 4y = 2e2x.

Soltuion - The corresponding homogeneous equation has the character-
istic equation r2−4r+4 = (r−2)2. So,it has one root, r = 2, of multiplicity
2, and the two linearly independent solutions y1 = e2x and y2 = xe2x. If we
calculate the Wronskian of these two functions we get:

W (x) =

∣

∣

∣

∣

e2x xe2x

2e2x 2xe2x + e2x

∣

∣

∣

∣

= 2xe4x + e4x − 2xe4x = e4x.

So, the corresponding integrals are:

∫

y2f

W
dx =

∫

xe2x(2e2x)

e4x
dx =

∫

2xdx = x2,

∫

y1f

W
dx =

∫

e2x(2e2x)

e4x
dx =

∫

2dx = 2x,
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and the particular solution is:

yp = −y1

∫

y2f

W
dx + y2

∫

y1f

W
dx = −e2xx2 + xe2x(2x) = x2e2x.

Notes on Homework Problems

There are many homework problems for this section. That’s because I
think the best way to get a handle on the method of undetermined coeffi-
cients is to do a bunch of them. So, suck it up and get to work! :)

For problems 3.5.1 and 3.5.11 you need to use the method of unde-
termined coefficients to find particular solutions. Both should be pretty
straightforward. For problems 3.5.23 and 3.5.28 you need to determine the
appropriate form of the particular solution, but you don’t need to actually
solve it. Unless you want to.

For problem 3.5.35 you’ll need to find both a particular solution and the
homogeneous solution, and then determine the values of the coefficients
in the homogeneous solution to make the initial value problem work out.
So, this one involves everything.

Problem 3.5.47 is the one and only variation of parameters problem I’m
going to ask you to do. Figure you should at least use the method once.
Well, OK, problem 3.5.56 is also a variation of parameters problem. So,
twice.
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