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In today’s lecture we’re going to examine, in detail, a physical system
whose behavior is modeled by a second-order linear ODE with constant
coefficients. We'll examine the different possible solutions, what deter-
mines these solutions, and what these solutions mean as far as the behav-
ior of the system is concerned.

The assigned problems for this section are:
Section 3.4 -1, 5, 18, 21

Simple Mechanical Systems and the Differential Equations
that Love Them

Today we’re going to examine a fairly simple mechanical system in detail,
and look closely at its possible solutions.




We have a mass on a spring connected to a dashpot. The forces on the
mass are:

The force from the spring:
Fg = —kux.
The force from the dashpot:
Fr=—cu.
An external driving force:

Fp = f(1).

Today we’ll assume that f(¢) = 0. The inhomogeneous, f(t) # 0, situa-
tion we’ll examine in detail next week.

According to Newton's second law:

s
> dt
Or, after a little algebra,

dx dzx

This is a second-order linear homogeneous ODE with constant coeffi-
cients. We can rewrite this as:'

d*x N c dx n k 0
- - —r =
dt2  mdt m

Before solving this, let’s take a look at another basic mechanical system;
the simple pendulum.

!Just diving everything by the mass m.



Bad Drawing:

We can apply the conservation of energy to the pendulum to derive the
differential equation:

1, (do\?
mgy+§mL <E) = C.

If we note that y = L(1 — cos §) we get:

1, (do\*
mgL(1 — cos @) + EmL (d_t) =C.

Differentiating both sides of this we get the equation:

. df o (dO\ (d?@
mgLsde—t +mL (E) (W) = 0.

Dividing through by the common factors we get:
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This is not a linear ODE. However, if we assume § is small we can use
the approximation sin 6 = 4 to get:



d’0 g
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This is, essentially, the same equation we saw before with the mass-
spring-dashpot system if we set ¢ = 0. A fundamental idea in physics
is that the same equations have the same solutions, and so the behavior

we witness for the mass-spring-dashpot system will be analogous to the
behavior of the pendulum.

The Solutions and What They Mean

The differential equation for the pendulum above has the solutions:

0(t) = 1 cos (\/%t) +psin (\/%e)

A=/ +

If we choose:

and
cos ¢ = 2, sin ¢ = 2
A A

then

b(6) = 4 coscscos <\/%t) + sin gsin (\/%))

If we use the relation:
cos (01 + 02) = cos by cos Oy — sin b sin 6,

we can rewrite 0(t) as:

0(t) = Acos (\/%t - ¢).
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This is the simplified equation for simple harmonic motion. We call the
terms:

A = Amplitude,
¢ = Phase shift,

\/E = Angular frequency = w.

h

From these we define the terms:

Frequency : f = i,

2T
1 2

Period: T = - = —W.
f w

Example - Most grandfather clocks have pendulums with adjustable
lengths. One such clock loses 10 min per day when the length of its pen-
dulum is 30 in. With what length pendulum will this clock keep perfect
time?



Now, if we look again at the mass-spring-dashpot system we examined
at the beginning of this lecture we note that we can rewrite the differential
equation as:

2"+ 2pr’ +wiz =0
with

k
wozw—>0,andp:i>0.
m 2m

If we use the quadratic formula to solve the characteristic equation for
this ODE we get:

—2p 4+ /(2p)2 — 4w? /

From this we get three fundamental possibilities, depending on the
sign of the discriminant p* — wg:

Case 1: Overdamped -

This case occurs when
p>wy aka. >4mk aka. thediscriminantis positive.

In this situation we have 2 real negative roots, and our solution is of
the form:

2(t) = cre™ + e’



Some representative graphs of this situation are below. We note that
the solution asymptotically goes to 0 as t — oo.
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Case 2: Critically Damped -

This case occurs when
p=wy aka c*=4mk aka thediscriminant is zero.

In this situation we have one real negative root of multiplicity two
and our solution is of the form:

z(t) = e (e + cot).

Some representative graphs of this situation are below. We note that,
again, the solution asymptotically goes to 0 as ¢ — oo.
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Case 3: Underdamped -
This case occurs when

p<wy aka ¢?<4km aka. thediscriminant is negative.

In this situation we have two complex roots and our solution is of
the form:

z(t) = e7P!(c; cos (wit) + cz sin (wit))

where
Vakm — c?

As explained for the pendulum we can rewrite this solution as:
z(t) = Ce™ cos (wit — a).

A representative graph of this situation is below. We note, again, that
the solution assymptotically approaches 0 ast — 00.?
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2Unless p = 0, in which case we have the behavior for the pendulum we examined

earlier.



Example - Solve the ODE that models the mass-spring-dashpot system
with the parameters:

1’0:2,1)0:0.

Is the system overdamped, critically damped, or underdamped?



Notes on Homework Problems

There are only four homework problems assigned from this section. The
tirst, 3.4.1, is a very simple problem where you just plug some numbers
into the period and frequency formulas.

Problem 3.4.5 is an interesting problem examining how the period of
a pendulum changes when gravity decreases as you move away from the
Earth. Note that for the change to be noticeable, you need to move a LONG
way away from the Earth’s surface.

Problems 3.4.18 and 3.4.21 explore different mass-spring-dashpot be-
haviors for different values of the relevant constants. Kind of like the three
cases explored in this lecture.
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