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Today we’re going to talk about a class of nth-order linear homoge-
neous ODEs that we know how to solve in general. These are linear ho-
mogeneous ODEs where the coefficient functions are in fact constant func-
tions. In this situation we do have a general procedure that we can use to
completely solve the ODEs. Today, we’ll learn what this general procedure
is.

Today’s lecture corresponds with section 3.3 of the textbook, and the
assigned problems from this section are:

Section 3.3 - 1, 10, 25, 30, 43

The Mouthful : Linear Homogeneous Ordinary Differential

Equations with Constant Coefficients

A linear homogeneous nth-order ODE with constant coefficients is a dif-
ferential equation of the form:

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0,

where the ai ∈ R are constants, and an 6= 0.

We found out that for second-order ODEs of this type we have solu-
tions of the form y = erx. Let’s see if that works for higher-order ODEs. If
we plug y = erx into the ODE above we get:
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anr
nerx + an−1r

n−1erx + · · ·a1re
rx + a0e

rx = 0

If we divide both sides by erx, which we know we can do for any value
of x as erx is never 0, we get the equation:

anrn + an−1r
n−1 + · · ·+ a1r + a0 = 0

which is true if and only if r is a root of the characteristic polynomial for
our differential equation:

anxn + an−1x
n−1 + · · ·+ a1x + a0

So, to repeat, if r is a root of the characteristic polynomial for our dif-
ferential equation, then erx is a solution to our differential equation.

Now, the fundamental theorem of algebra1 says that for any polyno-
mial:

xn + an−1x
n−1 + · · ·a1x + a0

(we’re assuming an = 1) we can factor it as:

(x − c1)
r1(x − c2)

r2 · · · (x − cm)rm

where r1 + r2 + · · · + rm = n, and the constants ci, the roots of the
polynomial, could be complex numbers. This presents us with a number
of possible situations.

1With a name like that, you know it’s important.
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A Number of Possible Situations

We can break down our possible situations into four distinct cases of vary-
ing complexity.

Case 1 - All roots of the characteristic polynomial are real and distinct.

If this is the case then we have n distinct solutions of the form

{er1x, er2x, . . . , ernx},

and our general solution will be:

y = c1e
r1x + c2e

r2x + · · ·+ cnernx

We can check that the solutions are linearly independent by noting
that the Wronskian for these solutions, evaluated at 0, is:
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This is something called the “Vandemonde determinant”, and it’s
never 0 when the ri are distinct. You will prove this in one of the
homework problems.
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Example - Find the general solution to the differential equation

y(3) − 6y′′ − y′ + 30y = 0.

Solution - The characteristic polynomial for this differential equation
is:

r3 − 6r2 − r + 30 = 0.

This factors as

(r + 2)(r − 5)(r − 3).

So, the roots are −2, 5, and 3. The general solution is:

y(x) = c1e
−2x + c2e

3x + c3e
5x.
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Case 2 - Repeated Roots, all real.

Let’s first just look at the case when our polynomial factors as:

(x − c)n.

In this case our differential equation can be written as:

(D − c)ny = 0

where D is the “differential operator”, an operator that when ap-
plied to a function takes the derivative of that function. It’s a linear
operator, and if you raise it to any power, that just means you take
that number of derivatives. For example:

(D − 1)2y = (D2 − 2D + 1)y = y′′ − 2y′ + y.

Now, any solution y to our differential equation can be written in the
form y(x) = u(x)ecx. If we apply the operator (D− c) to this solution
we get:

(D − c)u(x)ecx = u′(x)ecx + cu(x)ecx − cu(x)ecx = u′(x)ecx.

If we repeat this process n times we get:

(D − c)nu(x)ecx = u(n)(x)ecx.

If u(x)ecx is a solution to our differential equation then we have u(n)(x)ecx =
0, which implies u(n) = 0. This means:

u(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1.
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From this we get a set of linearly independent solutions to our ODE:

{ecx, xecx, x2ecx, . . . , xn−1ecx}.2

Example - Find the general solution to the differential equation

y(3) − 4y′′ − 3y′ + 18y = 0.

Solution - The characteristic equation for this ODE is:

r3 − 4r2 − 3r + 18 = 0.

This polynomial factors as:

(r − 3)2(r + 2).

So, the roots are 3, 3,−2. I’ve repeated 3 in this list because it’s a root
of multiplicity 2. The general solution will be:

y(x) = c2e
−2x + c2e

3x + c3xe3x.

2It’s a quick exercise to check that the Wronskian for these functions is always non-
zero.
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Case 3 - Complex Roots.

Suppose that the characteristic polynomial for our linear homoge-
neous ODE is second-order and can be factored as:

(x − r)(x − r)

where r is complex and r is its complex conjugate. Note that for any
polynomial:

anx
n + an−1x

n−1 + · · ·a1x + a0

if the ai are real and if r is a complex root, then r must also be a
complex root. So, for any characteristic equation if we get a complex
root, we’ll get another root by taking its complex conjugate.

OK, so if r is a complex root, then we can write r as r = a + bi, and
we get a solution to our differential equation:

erx = e(a+ib)x = eaxeibx = eax(cos (bx) + i sin (bx))

where we’ve used Euler’s formula3:

eiθ = cos θ + i sin θ.

Now, the fact that r = a − ib is also a solution to our characteristic
polynomial gives us another solution:

er = eax(cos (bx) − i sin (bx)).

A linear combination of these two can be written as:

3Richard Feynman called this the most amazing formula in all of mathematics.
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k1e
rx + k2e

rx = eax((k1 + k2) cos (bx) + (k1 − k2)i sin (bx)).

If we allow k1, k2 to be complex, then we can choose them so that the
above equation is equal to:

eax(c1 cos (bx) + c2 sin (bx))

where the coefficients c1 and c2 are arbitrary real constants. So, we
get two linearly independent solutions to our ODE: eax cos (bx) and
eax sin (bx), and any other solution can be written as a linear combi-
nation of these two.

Example - What is the general solution to the ODE:

y′′ + 4y′ + 8y = 0.

Solution - The characteristic equation for this ODE is:

r2 + 4r + 8 = 0.

Using the quadratic equation we get that the two roots are:

−4 ±
√

42 − 4(1)(8)

2
=

−4 ± 4i

2
= −2 ± 2i.

The corresponding general solution will be:

y(x) = c1e
−2x sin 2x + c2e

−2x cos 2x.
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Case 4 - The General Case

Suppose, yet again, that we have a linear homogeneous ordinary dif-
ferential equation with constant coefficients:

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0 = 0

To solve this problem, in general, what we do is we first calculate the
roots of the characteristic polynomial:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = an(x− r1)
k1(x− r2)

k2 · · · (x− rm)km

Now, there will be some set of these roots, say r1 through rl, which
are real. For each of these we will get a number of solutions equal to
the degree of the root. So, for example, for our first root r1 we will
get solutions:

c1e
r1x, c2xer1x, . . . , ck1

xk1−1er1x.

As for the other roots, rl+1 through rm, these will come in complex
conjugate pairs, and each element of these pairs will have the same
degree. So, for example, for the root rl+1 if we arrange our terms ap-
propriately rl+2 will be its complex conjugate, and we’ll have kl+1 =
kl+2. For this pair of roots we’ll get the set of solutions:

c1e
al+1x cos (bl+1x), c2xeal+1x cos (bl+1x), . . . , ckl+1

xkl+1−1eal+1x cos (bl+1x)

and

d1e
al+1x sin (bl+1x), d2xeal+1x sin (bl+1x), . . . , dkl+1

xkl+1−1eal+1x sin (bl+1x).

where the ci and di are unknown constants, and the constants al+1

and bl+1 are the real part and complex part, respectively, of the root
rl+1 = al+1 + ibl+1.
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Clear as mud? Yeah, in its full generality it’s kind of confusing to
state, but know that this more general statement just builds up from
the particular cases we’ve seen so far, and in this class and in most
situations we’ll only be dealing with relatively small order ODEs, so
the full machinery of the more general statement won’t be necessary
in practice. But, it’s good to know, or at least to see.

Finally, it’s worth nothing that, in practice, the hardest part of this
problem for high degree ODEs is finding the roots of the characteris-
tic polynomial. Turns out this is a difficult and very interesting prob-
lem, that you’ll learn much more about if you take a modern algebra
class.

Notes on Homework Problems

Problems 3.3.1, 3.3.10, 3.3.25, and 3.3.30 are just practice problems solving
differential equations of the types described above. In 3.3.25 it’s an initial
value problem, so after you’ve got the general solution you need to find
the constants c1, c2, and c3 that work for the given initial values. Shouldn’t
be too bad.

In problem 3.3.43 you play around a bit with Euler’s formula and get
some experience converting from “Cartesian” coordinates in the complex
plane to the analog of “polar” coordinates. A little different than the other
problems, but important to know how to do.

10


