
Math 2280 - Final Exam

University of Utah

Fall 2013

Name: Solutions by Dylan Zwick

This is a 2 hour exam. Please show all your work, as a worked problem
is required for full points, and partial credit may be rewarded for some
work in the right direction.
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Things You Might Want to Know

Definitions

L(f(t)) =

∫ ∞

0

e−stf(t)dt.

f(t) ∗ g(t) =

∫

t

0

f(τ)g(t − τ)dτ .

Laplace Transforms

L(tn) =
n!

sn+1

L(eat) =
1

s − a

L(sin (kt)) =
k

s2 + k2

L(cos (kt)) =
s

s2 + k2

L(δ(t − a)) = e−as

L(u(t− a)f(t − a)) = e−asF (s).

Translation Formula

L(eatf(t)) = F (s − a).

Derivative Formula

L(x(n)) = snX(s) − sn−1x(0) − sn−2x′(0) − · · · − sx(n−2)(0) − x(n−1)(0).
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Fourier Series Definition

For a function f(t) of period 2L the Fourier series is:

a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

.

an =
1

L

∫

L

−L

f(t) cos

(

nπt

L

)

dt

bn =
1

L

∫

L

−L

f(t) sin

(

nπt

L

)

dt.
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1. Basic Definitions (5 points)

(a) (3 points) State the order of the differential equation

exy(3) − 2 sin (y) + 3x4y′ = ln x.

Solution - 3rd Order

(b) (2 points) Is the differential equation

(x + 1)y(2) + 2y = 0

linear or nonlinear?

Solution - Nonlinear

2. Undetermined Coefficients (5 points)

Use the method of undetermined coefficients to state the form of the
particular solution to the differential equation

y(3) − y′′ − 4y′ + 4y = x2e2x sin (3x).

You do not have to solve for the coefficients, or solve the differential
equation.

Solution - (Ax2 + Bx + C)e2x sin (3x) + (Dx2 + Ex + F )e2x cos (3x).
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3. Converting to a First-Order System (5 points)

Convert the differential equation

y(3) − y′′ − 4y′ + 4y = x2e2x sin (3x).

into an equivalent system of first-order equations.

Solution -

y′
1 = y2,

y′
2 = y3,

y′
3 = y3 + 4y2 − 4y1 + x2e2x sin (3x).

4. Linear ODEs with Constant Coefficients (5 points)

Find the general solution to the homogeneous equation correspond-
ing to the differential equation

y(3) − y′′ − 4y′ + 4y = x2e2x sin (3x).

Hint - One root of the polynomial r3 − r2 − 4r + 4 is r = 2.

Solution - The corresponding homogeneous equation is

y(3) − y′′ − 4y′ + 4y = 0.

The characteristic polynomial for this ODE is r3 − r2 − 4r + 4 =
(r − 1)(r + 2)(r − 2). This polynomial has roots r = 1,±2. So, the
corresponding general solution is:

y(x) = c1e
x + c2e

2x + c3e
−2x.
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5. Solving Systems of Linear ODEs (15 points)

Find the general solution to the system of ODEs

x′ =





3 2 4
2 0 2
4 2 3



 x.

Hints - There are three linearly independent eigenvectors, and one of
the eigenvalues is 8.

Solution - The characteristic polynomial for the matrix is

∣

∣

∣

∣

∣

∣

3 − λ 2 4
2 −λ 2
4 2 3 − λ

∣

∣

∣

∣

∣

∣

= −(λ − 8)(λ + 1)2.

So, the eigenvalues are λ = 8,−1,−1.

The eigenvector for λ = 8 is:





−5 2 4
2 −8 2
4 2 −5









a
b
c



 =





0
0
0



 ⇒





a
b
c



 =





2
1
2



.

For λ = −1 the eigenvectors are:





5 2 4
2 1 2
4 2 4









a
b
c



 =





0
0
0





⇒





a
b
c



 =





1
0
−1



, or





a
b
c



 =





1
−4
1



.
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So, even though there is a repeated eigenvalue, we still have three
linearly independent eigenvectors, and our general solution is

x(t) = c1





2
1
2



 e8t + c2





1
0
−1



 e−t + c3





1
−4
1



 e−t.
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6. Convolutions and Laplace Transforms (10 points)

Find the inverse Laplace transform of the function

F (s) =
s

(s − 3)(s2 + 1)
.

Hint -

∫

e−3τ cos (τ)dτ =
1

10

(

e−3τ sin (τ) − 3e−3τ cos (τ)
)

.

Solution - The function F (s) is the product

(

1

s − 3

)(

s

s2 + 1

)

= L(e3t)L(cos (t)).

The inverse Laplace transform of this product will be the convolu-
tion

e3t ∗ cos (t) =

∫

t

0

e3(t−τ) cos (τ)dτ = e3t

∫

t

0

e−3τ cos (τ)dτ

=
e3t

10

(

e−3τ sin (τ) − 3e−3τ cos (τ)
)

∣

∣

∣

∣

t

0

=
1

10

(

sin (t) − 3 cos (t) + 3e3t
)

.
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7. Power Series Solutions (15 points)

Use the power series method to find the first six terms (up to the x6

term) in a power series solution to the differential equation

3y′′ + xy′ − 4y = 0.

Solution - Setting our solution up as a power series

y(x) =

∞
∑

n=0

cnx
n

and plugging this into our differential equation we get

3

∞
∑

n=2

n(n − 1)cnx
n−2 +

∞
∑

n=1

ncnxn − 4

∞
∑

n=0

cnx
n = 0.

If we shift the first sum by 2, and note the second sum will be the
same if we begin at n = 0, we get

∞
∑

n=0

(3(n + 2)(n + 1)cn+2 + (n − 4)cn)xn = 0.

Applying the identity principle we get the recursion relation

cn+2 =
4 − n

3(n + 2)(n + 1)
cn.

For the even terms we get:
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c0 = c0;

c2 =
2

3
c0;

c4 =
1

18
c2 =

1

27
c0;

c6 = 0.

All higher even terms will also be 0. As for the odd terms we get:

c1 = c1;

c3 =
1

6
c1;

c5 =
1

60
c3 =

1

360
c1.

So, up to the x6 term our solution is

y(x) = c0

(

1 +
2

3
x2 +

1

27
x4

)

+ c1

(

x +
1

6
x3 +

1

360
x5 + · · ·

)

.

In case you’re curious, the general solution is

y(x) = c0

(

1 +
2

3
x2 +

1

27
x4

)

+

c1

(

x +
1

6
x3 +

1

360
x5 + 3

∞
∑

n=3

(−1)n(2n − 5)!!x2n+1

(2n + 1)!3n

)

.
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8. Ordinary Points, Regular Singular Points, and Irregular Singular
Points (5 points)

Determine if the point x = 0 is an ordinary point, a regular singular
point, or an irregular singular point for the linear differential equa-
tion

x3y′′ − xy′ + 4xy = 0.

Solution - We can rewrite this differential equation as

y′′ − 1

x2
y′ +

4

x2
y = 0.

The coefficient functions P (x) = −1/x2 and Q(x) = 4/x2 are both
singular at x = 0, so it’s a singular point. The functions

p(x) = xP (x) = −1

x
,

q(x) = x2Q(x) = 4

are not both nonsingular at x = 0, as p(x) is singular. So, x = 0 is an
irregular singular point.
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9. Endpoint Value Problems (10 points)

Find the eigenvalues and eigenfunctions corresponding to the non-
trivial solutions of the endpoint value problem

X ′′(x) + λX(x) = 0,

X(0) = X(2) = 0.

Solution - If λ < 0 then our solution will be of the form

X(x) = Ae
√
−λx + Be−

√
−λx.

Plugging in our boundary values gives us

X(0) = A + B = 0 ⇒ A = −B,

and

X(2) = Ae2
√
−λ + Be−2

√
−λ = A(e2

√
−λ − e−2

√
−λ) = 0.

If A 6= 0 then we must have

e2
√
−λ = e−2

√
−λ.

The only point where ex = e−x is at x = 0, and as λ < 0 this cannot
be the case. So, λ < 0 has no nontrivial solution.

If λ = 0 then the solution to the ODE is

X(x) = Ax + B.
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If we plug in our boundayr values we get

X(0) = B = 0,

X(2) = 2A = 0 ⇒ A = 0.

So, there is no nontrivial solution, and λ = 0 is not an eigenvalue.

Finally, if λ > 0 the solution to the ODE is

X(x) = A cos (
√

λx) + B sin (
√

λx).

If we plug in our boundary values we get

X(0) = A = 0,

X(2) = B sin (2
√

λ) = 0.

If B 6= 0 we must have sin (2
√

λ) = 0. As sin (x) = 0 if x = nπ this
would imply

2
√

λ = nπ ⇒ λ =
n2π2

4
.

So, the eigenvalues are

λn =
n2π2

4
,

and the corresponding eigenfunctions are

Xn(x) = sin
(nπx

2

)

.
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10. Fourier Series (15 points)

Graph the odd extension of the function

I x 0<x<1
f(x) =

2—x 1<x<2

and find its Fourier sine series.

Solution -

/

The Fourier coefficients will be:

2 p2

B=— / f(x)sin(___)dx=
2Jo 2
nnx 12

i xs1n()+J (2_x)s1n()

/ 4 nrx’ 2 /flltX\’\
1 /uirx\ 2

= (—srn(————)—-——xcos(-———) I —-——cos(—-———) —

\ 2’ rin \ 2),/ nn \ 2)1

/ 4 . nn 2
2

I —sill———) —-——xcosj-—--—I
\ 2 J nir ‘ 2 ‘1

4 2 n-ir’ 4 4 /fl7t’
—sin) —) — —cos)--— — —cos(nn)+ —cosi —I +
n2it2 \2) nit \2J nit nit \21

4 4 ,‘nit” 2 nir
— cos (nit) + — sin ) — cos
nit n2ir2 \2) nit

8 . /nir I (—1)i (—-) n odd
= — Sill I I =

n2ir2 \21 1 0 neven
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So, the Fourier sine series is

8

π2

(

sin
(πx

2

)

− 1

32
sin

(

3πx

2

)

+
1

52
sin

(

5πx

2

)

− 1

72
sin

(

7πx

2

)

+ · · ·
)

.
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11. The Heat Equation (10 points)

Find the solution to the partial differential equation

ut = 3uxx,

u(0, t) = u(2, t) = 0,

u(x, 0) =

{

x 0 < x < 1
2 − x 1 ≤ x < 2

Solution - We assume our solution is a separable equation

u(x, t) = X(x)T (t).

Plugging this into our differential equation we get

X(x)T ′(t) = 3X ′′(x)T (t)

⇒ T ′(t)

3T (t)
=

X ′′(x)

X(x)
= −λ.

Where −λ is a constant by our standard argument. This means the
function X(x) must satisfy the differential equation

X ′′(x) + λX(x) = 0,

with the endpoint conditions X(0) = X(2) = 0. As we saw derived
in Problem 9, this means X will be a function of the form

Xn(x) = sin
(nπx

2

)

,

with corresponding eigenvalues

λn =
n2π2

4
.
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The function Tn must satisfy the differential equation

T ′
n
(t) + 3λnTn(t) = 0.

This differential equation has the solution

Tn(t) = Ce−3λnt = Ce−
3n

2
π
2

4
t.

The corresponding solutions to the PDE will be

un(x, t) = An sin
(nπx

2

)

e−
3n

2
π
2

t

4 .

We need to find coefficients An such that

u(x, t) =
∞
∑

n=1

un(x, t) =
∞
∑

n=1

An sin
(nπx

2

)

e−
3n

2
π
2

4

satisfies

u(x, 0) =
∞
∑

n=1

An sin
(nπx

2

)

=

{

x 0 < x < 1
2 − x 1 ≤ x < 2

on the interval 0 < x < 2. To do this, we take the odd extension of
u(x, 0), and find the corresponding Fourier coefficients for the odd
extension. We already did this in Problem 10, and the solution is

An =

{

(−1)
n−1

2

(

8
n2π2

)

n odd
0 n even
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So, our solution is

u(x, t) =
8

π2

∞
∑

n=0

(−1)n sin

(

(2n + 1)π

2

)

e−
3(2n+1)2π

2
t

4

=
8

π2

(

sin
(πx

2

)

e−
3π

2
t

4 − 1

32
sin

(

3πx

2

)

e−
12π

2
t

4 +
1

52
sin

(

5πx

2

)

e−
75π

2
t

4 − · · ·
)
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12. Nonlinear Systems of ODEs (10 Points Extra Credit)

Find all the critical points of the system

dx

dt
= y2 − 1,

dy

dt
= x3 − y,

and determine if each critical point is either stable or unstable.

Solution - The Jacobian matrix for this system of differential equa-
tions is

J(x, y) =

(

0 2y
3x2 −1

)

.

The critical points will be:

y2 − 1 = 0 ⇒ y = ±1;

x3 − y = 0 ⇒ x3 = y.

If y = 1 then x = 1, and if y = −1 then x = −1. So, the two critical
points are (1, 1) and (−1,−1).

As for the stability of these critical points, the values of our Jacobian
matrix at these points are

J(1, 1) =

(

0 2
3 −1

)

, J(−1,−1) =

(

0 −2
3 −1

)

.

The eigenvalues for these will be:
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∣

∣

∣

∣

−λ 2
3 −1 − λ

∣

∣

∣

∣

= λ(λ + 1) − 6 = λ2 + λ − 6 = (λ + 3)(λ − 2),

so λ = 2,−3.

∣

∣

∣

∣

−λ −2
3 −1 − λ

∣

∣

∣

∣

= λ(λ + 1) + 6 = λ2 + λ + 6,

so λ = −1±
√

1−24
2

= −1±i
√

23
2

.

At (1, 1) we have two real eigenvalues of different sign, so it’s a sad-
dle point, which is unstable. At (−1,−1) we have complex eigenval-
ues with a negative real part, so we have a stable spiral point.
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