Math 2280 - Final Exam

University of Utah

Fall 2013

Name: Solutions by Dylan Zwick
This is a 2 hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

$$
\begin{gathered}
\text { Definitions } \\
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t . \\
f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
\end{gathered}
$$

Laplace Transforms

$$
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}
$$

$$
\mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a}
$$

$$
\mathcal{L}(\sin (k t))=\frac{k}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\cos (k t))=\frac{s}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

$$
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
$$

Translation Formula

$$
\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a) .
$$

Derivative Formula
$\mathcal{L}\left(x^{(n)}\right)=s^{n} X(s)-s^{n-1} x(0)-s^{n-2} x^{\prime}(0)-\cdots-s x^{(n-2)}(0)-x^{(n-1)}(0)$.

Fourier Series Definition

For a function $f(t)$ of period $2 L$ the Fourier series is:

$$
\begin{aligned}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} & \left(a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right) \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t
\end{aligned}
$$

1. Basic Definitions (5 points)

(a) (3 points) State the order of the differential equation

$$
e^{x} y^{(3)}-2 \sin (y)+3 x^{4} y^{\prime}=\ln x
$$

Solution - 3rd Order
(b) (2 points) Is the differential equation

$$
(x+1) y^{(2)}+2 y=0
$$

linear or nonlinear?
Solution - Nonlinear

2. Undetermined Coefficients (5 points)

Use the method of undetermined coefficients to state the form of the particular solution to the differential equation

$$
y^{(3)}-y^{\prime \prime}-4 y^{\prime}+4 y=x^{2} e^{2 x} \sin (3 x) .
$$

You do not have to solve for the coefficients, or solve the differential equation.

Solution $-\left(A x^{2}+B x+C\right) e^{2 x} \sin (3 x)+\left(D x^{2}+E x+F\right) e^{2 x} \cos (3 x)$.

3. Converting to a First-Order System (5 points)

Convert the differential equation

$$
y^{(3)}-y^{\prime \prime}-4 y^{\prime}+4 y=x^{2} e^{2 x} \sin (3 x) .
$$

into an equivalent system of first-order equations.

Solution -

$$
\begin{gathered}
y_{1}^{\prime}=y_{2} \\
y_{2}^{\prime}=y_{3} \\
y_{3}^{\prime}=y_{3}+4 y_{2}-4 y_{1}+x^{2} e^{2 x} \sin (3 x)
\end{gathered}
$$

4. Linear ODEs with Constant Coefficients (5 points)

Find the general solution to the homogeneous equation corresponding to the differential equation

$$
y^{(3)}-y^{\prime \prime}-4 y^{\prime}+4 y=x^{2} e^{2 x} \sin (3 x) .
$$

Hint - One root of the polynomial $r^{3}-r^{2}-4 r+4$ is $r=2$.
Solution - The corresponding homogeneous equation is

$$
y^{(3)}-y^{\prime \prime}-4 y^{\prime}+4 y=0 .
$$

The characteristic polynomial for this ODE is $r^{3}-r^{2}-4 r+4=$ $(r-1)(r+2)(r-2)$. This polynomial has roots $r=1, \pm 2$. So, the corresponding general solution is:

$$
y(x)=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{-2 x} .
$$

5. Solving Systems of Linear ODEs (15 points)

Find the general solution to the system of ODEs

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right) \mathbf{x}
$$

Hints - There are three linearly independent eigenvectors, and one of the eigenvalues is 8 .

Solution - The characteristic polynomial for the matrix is

$$
\left|\begin{array}{ccc}
3-\lambda & 2 & 4 \\
2 & -\lambda & 2 \\
4 & 2 & 3-\lambda
\end{array}\right|=-(\lambda-8)(\lambda+1)^{2}
$$

So, the eigenvalues are $\lambda=8,-1,-1$.
The eigenvector for $\lambda=8$ is:

$$
\left(\begin{array}{ccc}
-5 & 2 & 4 \\
2 & -8 & 2 \\
4 & 2 & -5
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) .
$$

For $\lambda=-1$ the eigenvectors are:

$$
\begin{gathered}
\left(\begin{array}{lll}
5 & 2 & 4 \\
2 & 1 & 2 \\
4 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\Rightarrow\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right) .
\end{gathered}
$$

So, even though there is a repeated eigenvalue, we still have three linearly independent eigenvectors, and our general solution is

$$
\mathbf{x}(t)=c_{1}\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) e^{8 t}+c_{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) e^{-t}+c_{3}\left(\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right) e^{-t} .
$$

6. Convolutions and Laplace Transforms (10 points)

Find the inverse Laplace transform of the function

$$
F(s)=\frac{s}{(s-3)\left(s^{2}+1\right)}
$$

Hint $-\int e^{-3 \tau} \cos (\tau) d \tau=\frac{1}{10}\left(e^{-3 \tau} \sin (\tau)-3 e^{-3 \tau} \cos (\tau)\right)$.
Solution - The function $F(s)$ is the product

$$
\left(\frac{1}{s-3}\right)\left(\frac{s}{s^{2}+1}\right)=\mathcal{L}\left(e^{3 t}\right) \mathcal{L}(\cos (t))
$$

The inverse Laplace transform of this product will be the convolution

$$
\begin{aligned}
e^{3 t} * \cos (t) & =\int_{0}^{t} e^{3(t-\tau)} \cos (\tau) d \tau=e^{3 t} \int_{0}^{t} e^{-3 \tau} \cos (\tau) d \tau \\
& =\left.\frac{e^{3 t}}{10}\left(e^{-3 \tau} \sin (\tau)-3 e^{-3 \tau} \cos (\tau)\right)\right|_{0} ^{t} \\
& =\frac{1}{10}\left(\sin (t)-3 \cos (t)+3 e^{3 t}\right)
\end{aligned}
$$

7. Power Series Solutions (15 points)

Use the power series method to find the first six terms (up to the x^{6} term) in a power series solution to the differential equation

$$
3 y^{\prime \prime}+x y^{\prime}-4 y=0
$$

Solution - Setting our solution up as a power series

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

and plugging this into our differential equation we get

$$
3 \sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\sum_{n=1}^{\infty} n c_{n} x^{n}-4 \sum_{n=0}^{\infty} c_{n} x^{n}=0 .
$$

If we shift the first sum by 2 , and note the second sum will be the same if we begin at $n=0$, we get

$$
\sum_{n=0}^{\infty}\left(3(n+2)(n+1) c_{n+2}+(n-4) c_{n}\right) x^{n}=0 .
$$

Applying the identity principle we get the recursion relation

$$
c_{n+2}=\frac{4-n}{3(n+2)(n+1)} c_{n} .
$$

For the even terms we get:

$$
\begin{gathered}
c_{0}=c_{0} ; \\
c_{2}=\frac{2}{3} c_{0} ; \\
c_{4}=\frac{1}{18} c_{2}=\frac{1}{27} c_{0} ; \\
c_{6}=0 .
\end{gathered}
$$

All higher even terms will also be 0 . As for the odd terms we get:

$$
\begin{gathered}
c_{1}=c_{1} ; \\
c_{3}=\frac{1}{6} c_{1} ; \\
c_{5}=\frac{1}{60} c_{3}=\frac{1}{360} c_{1} .
\end{gathered}
$$

So, up to the x^{6} term our solution is

$$
y(x)=c_{0}\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right)+c_{1}\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}+\cdots\right) .
$$

In case you're curious, the general solution is

$$
\begin{gathered}
y(x)=c_{0}\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right)+ \\
c_{1}\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}+3 \sum_{n=3}^{\infty} \frac{(-1)^{n}(2 n-5)!!x^{2 n+1}}{(2 n+1)!3^{n}}\right) .
\end{gathered}
$$

8. Ordinary Points, Regular Singular Points, and Irregular Singular

 Points (5 points)Determine if the point $x=0$ is an ordinary point, a regular singular point, or an irregular singular point for the linear differential equation

$$
x^{3} y^{\prime \prime}-x y^{\prime}+4 x y=0 .
$$

Solution - We can rewrite this differential equation as

$$
y^{\prime \prime}-\frac{1}{x^{2}} y^{\prime}+\frac{4}{x^{2}} y=0
$$

The coefficient functions $P(x)=-1 / x^{2}$ and $Q(x)=4 / x^{2}$ are both singular at $x=0$, so it's a singular point. The functions

$$
\begin{gathered}
p(x)=x P(x)=-\frac{1}{x} \\
q(x)=x^{2} Q(x)=4
\end{gathered}
$$

are not both nonsingular at $x=0$, as $p(x)$ is singular. So, $x=0$ is an irregular singular point.

9. Endpoint Value Problems (10 points)

Find the eigenvalues and eigenfunctions corresponding to the nontrivial solutions of the endpoint value problem

$$
\begin{gathered}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=X(2)=0
\end{gathered}
$$

Solution - If $\lambda<0$ then our solution will be of the form

$$
X(x)=A e^{\sqrt{-\lambda} x}+B e^{-\sqrt{-\lambda} x}
$$

Plugging in our boundary values gives us

$$
\begin{gathered}
X(0)=A+B=0 \Rightarrow A=-B \\
\text { and } \\
X(2)=A e^{2 \sqrt{-\lambda}}+B e^{-2 \sqrt{-\lambda}}=A\left(e^{2 \sqrt{-\lambda}}-e^{-2 \sqrt{-\lambda}}\right)=0 .
\end{gathered}
$$

If $A \neq 0$ then we must have

$$
e^{2 \sqrt{-\lambda}}=e^{-2 \sqrt{-\lambda}}
$$

The only point where $e^{x}=e^{-x}$ is at $x=0$, and as $\lambda<0$ this cannot be the case. So, $\lambda<0$ has no nontrivial solution.

If $\lambda=0$ then the solution to the ODE is

$$
X(x)=A x+B
$$

If we plug in our boundayr values we get

$$
\begin{gathered}
X(0)=B=0 \\
X(2)=2 A=0 \Rightarrow A=0 .
\end{gathered}
$$

So, there is no nontrivial solution, and $\lambda=0$ is not an eigenvalue.
Finally, if $\lambda>0$ the solution to the ODE is

$$
X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x) .
$$

If we plug in our boundary values we get

$$
\begin{gathered}
X(0)=A=0 \\
X(2)=B \sin (2 \sqrt{\lambda})=0 .
\end{gathered}
$$

If $B \neq 0$ we must have $\sin (2 \sqrt{\lambda})=0$. As $\sin (x)=0$ if $x=n \pi$ this would imply

$$
2 \sqrt{\lambda}=n \pi \Rightarrow \lambda=\frac{n^{2} \pi^{2}}{4}
$$

So, the eigenvalues are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{4}
$$

and the corresponding eigenfunctions are

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{2}\right)
$$

10. Fourier Series (15 points)

Graph the odd extension of the function

$$
f(x)=\left\{\begin{array}{cc}
x & 0<x<1 \\
2-x & 1 \leq x<2
\end{array}\right.
$$

and find its Fourier sine series.
Solution -

The Fourier coefficients will be:

$$
\begin{gathered}
B_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x= \\
\int_{0}^{1} x \sin \left(\frac{n \pi x}{2}\right)+\int_{1}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) \\
=\left.\left(\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi x}{2}\right)-\frac{2}{n \pi} x \cos \left(\frac{n \pi x}{2}\right)\right)\right|_{0} ^{1}-\left.\frac{4}{n \pi} \cos \left(\frac{n \pi x}{2}\right)\right|_{1} ^{2}- \\
\left.\left(\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right)-\frac{2}{n \pi} x \cos \left(\frac{n \pi x}{2}\right)\right)\right|_{1} ^{2} \\
=\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right)-\frac{2}{n \pi} \cos \left(\frac{n \pi}{2}\right)-\frac{4}{n \pi} \cos (n \pi)+\frac{4}{n \pi} \cos \left(\frac{n \pi}{2}\right)+ \\
\frac{4}{n \pi} \cos (n \pi)+\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right)-\frac{2}{n \pi} \cos \left(\frac{n \pi}{2}\right) \\
=\frac{8}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right)=\left\{\begin{array}{rl}
(-1)^{\frac{n-1}{2}}\left(\frac{8}{n^{2} \pi^{2}}\right) & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
\end{gathered}
$$

So, the Fourier sine series is

$$
\frac{8}{\pi^{2}}\left(\sin \left(\frac{\pi x}{2}\right)-\frac{1}{3^{2}} \sin \left(\frac{3 \pi x}{2}\right)+\frac{1}{5^{2}} \sin \left(\frac{5 \pi x}{2}\right)-\frac{1}{7^{2}} \sin \left(\frac{7 \pi x}{2}\right)+\cdots\right)
$$

11. The Heat Equation (10 points)

Find the solution to the partial differential equation

$$
\begin{gathered}
u_{t}=3 u_{x x}, \\
u(0, t)=u(2, t)=0, \\
u(x, 0)=\left\{\begin{array}{cc}
x & 0<x<1 \\
2-x & 1 \leq x<2
\end{array}\right.
\end{gathered}
$$

Solution - We assume our solution is a separable equation

$$
u(x, t)=X(x) T(t)
$$

Plugging this into our differential equation we get

$$
\begin{aligned}
& X(x) T^{\prime}(t)=3 X^{\prime \prime}(x) T(t) \\
& \Rightarrow \frac{T^{\prime}(t)}{3 T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda
\end{aligned}
$$

Where $-\lambda$ is a constant by our standard argument. This means the function $X(x)$ must satisfy the differential equation

$$
X^{\prime \prime}(x)+\lambda X(x)=0
$$

with the endpoint conditions $X(0)=X(2)=0$. As we saw derived in Problem 9, this means X will be a function of the form

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{2}\right)
$$

with corresponding eigenvalues

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{4}
$$

The function T_{n} must satisfy the differential equation

$$
T_{n}^{\prime}(t)+3 \lambda_{n} T_{n}(t)=0
$$

This differential equation has the solution

$$
T_{n}(t)=C e^{-3 \lambda_{n} t}=C e^{-\frac{3 n^{2} \pi^{2}}{4} t}
$$

The corresponding solutions to the PDE will be

$$
u_{n}(x, t)=A_{n} \sin \left(\frac{n \pi x}{2}\right) e^{-\frac{3 n^{2} \pi^{2} t}{4}}
$$

We need to find coefficients A_{n} such that

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{2}\right) e^{-\frac{3 n^{2} \pi^{2}}{4}}
$$

satisfies

$$
u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{2}\right)=\left\{\begin{array}{cc}
x & 0<x<1 \\
2-x & 1 \leq x<2
\end{array}\right.
$$

on the interval $0<x<2$. To do this, we take the odd extension of $u(x, 0)$, and find the corresponding Fourier coefficients for the odd extension. We already did this in Problem 10, and the solution is

$$
A_{n}=\left\{\begin{array}{cc}
(-1)^{\frac{n-1}{2}}\left(\frac{8}{n^{2} \pi^{2}}\right) & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
$$

So, our solution is

$$
\begin{gathered}
u(x, t)=\frac{8}{\pi^{2}} \sum_{n=0}^{\infty}(-1)^{n} \sin \left(\frac{(2 n+1) \pi}{2}\right) e^{-\frac{3(2 n+1)^{2} \pi^{2} t}{4}} \\
\frac{8}{\pi^{2}}\left(\sin \left(\frac{\pi x}{2}\right) e^{-\frac{3 \pi^{2} t}{4}}-\frac{1}{3^{2}} \sin \left(\frac{3 \pi x}{2}\right) e^{-\frac{12 \pi^{2} t}{4}}+\frac{1}{5^{2}} \sin \left(\frac{5 \pi x}{2}\right) e^{-\frac{75 \pi^{2} t}{4}}-\cdots\right)
\end{gathered}
$$

12. Nonlinear Systems of ODEs (10 Points Extra Credit)

Find all the critical points of the system

$$
\begin{aligned}
& \frac{d x}{d t}=y^{2}-1 \\
& \frac{d y}{d t}=x^{3}-y
\end{aligned}
$$

and determine if each critical point is either stable or unstable.
Solution - The Jacobian matrix for this system of differential equations is

$$
J(x, y)=\left(\begin{array}{cc}
0 & 2 y \\
3 x^{2} & -1
\end{array}\right)
$$

The critical points will be:

$$
\begin{aligned}
& y^{2}-1=0 \Rightarrow y= \pm 1 \\
& x^{3}-y=0 \Rightarrow x^{3}=y
\end{aligned}
$$

If $y=1$ then $x=1$, and if $y=-1$ then $x=-1$. So, the two critical points are $(1,1)$ and $(-1,-1)$.

As for the stability of these critical points, the values of our Jacobian matrix at these points are

$$
J(1,1)=\left(\begin{array}{cc}
0 & 2 \\
3 & -1
\end{array}\right), \quad J(-1,-1)=\left(\begin{array}{cc}
0 & -2 \\
3 & -1
\end{array}\right)
$$

The eigenvalues for these will be:

$$
\begin{gathered}
\left|\begin{array}{cc}
-\lambda & 2 \\
3 & -1-\lambda
\end{array}\right|=\lambda(\lambda+1)-6=\lambda^{2}+\lambda-6=(\lambda+3)(\lambda-2) \\
\text { so } \lambda=2,-3 \\
\left|\begin{array}{cc}
-\lambda & -2 \\
3 & -1-\lambda
\end{array}\right|=\lambda(\lambda+1)+6=\lambda^{2}+\lambda+6 \\
\text { so } \lambda=\frac{-1 \pm \sqrt{1-24}}{2}=\frac{-1 \pm i \sqrt{23}}{2} .
\end{gathered}
$$

At $(1,1)$ we have two real eigenvalues of different sign, so it's a saddle point, which is unstable. At $(-1,-1)$ we have complex eigenvalues with a negative real part, so we have a stable spiral point.

