
Math 2280 - Final Exam

University of Utah

Fall 2013

Name:

This is a 2 hour exam. Please show all your work, as a worked problem
is required for full points, and partial credit may be rewarded for some
work in the right direction.
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Things You Might Want to Know

Definitions

L(f(t)) =

∫

∞

0

e−stf(t)dt.

f(t) ∗ g(t) =

∫

t

0

f(τ)g(t − τ)dτ .

Laplace Transforms

L(tn) =
n!

sn+1

L(eat) =
1

s − a

L(sin (kt)) =
k

s2 + k2

L(cos (kt)) =
s

s2 + k2

L(δ(t − a)) = e−as

L(u(t− a)f(t − a)) = e−asF (s).

Translation Formula

L(eatf(t)) = F (s − a).

Derivative Formula

L(x(n)) = snX(s) − sn−1x(0) − sn−2x′(0) − · · · − sx(n−2)(0) − x(n−1)(0).
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Fourier Series Definition

For a function f(t) of period 2L the Fourier series is:

a0

2
+

∞
∑

n=1

(

an cos

(

nπt

L

)

+ bn sin

(

nπt

L

))

.

an =
1

L

∫

L

−L

f(t) cos

(

nπt

L

)

dt

bn =
1

L

∫

L

−L

f(t) sin

(

nπt

L

)

dt.
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1. Basic Definitions (5 points)

(a) (3 points) State the order of the differential equation

exy(3) − 2 sin (y) + 3x4y′ = ln x.

(b) (2 points) Is the differential equation

(x + 1)y(2) + 2y = 0

linear or nonlinear?

2. Undetermined Coefficients (5 points)

Use the method of undetermined coefficients to state the form of the
particular solution to the differential equation

y(3) − y′′ − 4y′ + 4y = x2e2x sin (3x).

You do not have to solve for the coefficients, or solve the differential
equation.

4



3. Converting to a First-Order System (5 points)

Convert the differential equation

y(3) − y′′ − 4y′ + 4y = x2e2x sin (3x).

into an equivalent system of first-order equations.

4. Linear ODEs with Constant Coefficients (5 points)

Find the general solution to the homogeneous equation correspond-
ing to the differential equation

y(3) − y′′ − 4y′ + 4y = x2e2x sin (3x).

Hint - One root of the polynomial r3 − r2 − 4r + 4 is r = 2.
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5. Solving Systems of Linear ODEs (15 points)

Find the general solution to the system of ODEs

x′ =





3 2 4
2 0 2
4 2 3



 x.

Hints - There are three linearly independent eigenvectors, and one of
the eigenvalues is 8.
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More room for Problem 5, if you need it.
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6. Convolutions and Laplace Transforms (10 points)

Find the inverse Laplace transform of the function

F (s) =
s

(s − 3)(s2 + 1)
.

Hint -

∫

e−3τ cos (τ)dτ =
1

10

(

e−3τ sin (τ) − 3e−3τ cos (τ)
)

.
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More room for Problem 6, if you need it.
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7. Power Series Solutions (15 points)

Use the power series method to find the first six terms (up to the x6

term) in a power series solution to the differential equation

3y′′ + xy′ − 4y = 0.
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More room for Problem 7, if you need it.
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8. Ordinary Points, Regular Singular Points, and Irregular Singular
Points (5 points)

Determine if the point x = 0 is an ordinary point, a regular singular
point, or an irregular singular point for the linear differential equa-
tion

x3y′′ − xy′ + 4xy = 0.
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9. Endpoint Value Problems (10 points)

Find the eigenvalues and eigenfunctions corresponding to the non-
trivial solutions of the endpoint value problem

X ′′(x) + λX(x) = 0,

X(0) = X(2) = 0.
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More room for Problem 9, if you need it.
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10. Fourier Series (15 points)

Graph the odd extension of the function

f(x) =

{

x 0 < x < 1
2 − x 1 ≤ x < 2

and find its Fourier sine series.
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More room for Problem 10, if you need it.
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11. The Heat Equation (10 points)

Find the solution to the partial differential equation

ut = 3uxx,

u(0, t) = u(2, t) = 0,

u(x, 0) =

{

x 0 < x < 1
2 − x 1 ≤ x < 2
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More room for Problem 11, if you need it.
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12. Nonlinear Systems of ODEs (10 Points Extra Credit)

Find all the critical points of the system

dx

dt
= y2 − 1,

dy

dt
= x3 − y,

and determine if each critical point is either stable or unstable.
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More room for Problem 12, if you need it.
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