Math 2280 - Final Exam

University of Utah

Fall 2013

Name:

\qquad
This is a 2 hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

$$
\begin{gathered}
\text { Definitions } \\
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t . \\
f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
\end{gathered}
$$

Laplace Transforms

$$
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}
$$

$$
\mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a}
$$

$$
\mathcal{L}(\sin (k t))=\frac{k}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\cos (k t))=\frac{s}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

$$
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
$$

Translation Formula

$$
\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a) .
$$

Derivative Formula
$\mathcal{L}\left(x^{(n)}\right)=s^{n} X(s)-s^{n-1} x(0)-s^{n-2} x^{\prime}(0)-\cdots-s x^{(n-2)}(0)-x^{(n-1)}(0)$.

Fourier Series Definition

For a function $f(t)$ of period $2 L$ the Fourier series is:

$$
\begin{aligned}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} & \left(a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)\right) \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(\frac{n \pi t}{L}\right) d t
\end{aligned}
$$

1. Basic Definitions (5 points)

(a) (3 points) State the order of the differential equation

$$
e^{x} y^{(3)}-2 \sin (y)+3 x^{4} y^{\prime}=\ln x .
$$

(b) (2 points) Is the differential equation

$$
(x+1) y^{(2)}+2 y=0
$$

linear or nonlinear?

2. Undetermined Coefficients (5 points)

Use the method of undetermined coefficients to state the form of the particular solution to the differential equation

$$
y^{(3)}-y^{\prime \prime}-4 y^{\prime}+4 y=x^{2} e^{2 x} \sin (3 x) .
$$

You do not have to solve for the coefficients, or solve the differential equation.

3. Converting to a First-Order System (5 points)

Convert the differential equation

$$
y^{(3)}-y^{\prime \prime}-4 y^{\prime}+4 y=x^{2} e^{2 x} \sin (3 x) .
$$

into an equivalent system of first-order equations.

4. Linear ODEs with Constant Coefficients (5 points)

Find the general solution to the homogeneous equation corresponding to the differential equation

$$
y^{(3)}-y^{\prime \prime}-4 y^{\prime}+4 y=x^{2} e^{2 x} \sin (3 x) .
$$

Hint - One root of the polynomial $r^{3}-r^{2}-4 r+4$ is $r=2$.

5. Solving Systems of Linear ODEs (15 points)

Find the general solution to the system of ODEs

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right) \mathbf{x}
$$

Hints - There are three linearly independent eigenvectors, and one of the eigenvalues is 8 .

More room for Problem 5, if you need it.
6. Convolutions and Laplace Transforms (10 points)

Find the inverse Laplace transform of the function

$$
F(s)=\frac{s}{(s-3)\left(s^{2}+1\right)}
$$

Hint $-\int e^{-3 \tau} \cos (\tau) d \tau=\frac{1}{10}\left(e^{-3 \tau} \sin (\tau)-3 e^{-3 \tau} \cos (\tau)\right)$.

More room for Problem 6, if you need it.

7. Power Series Solutions (15 points)

Use the power series method to find the first six terms (up to the x^{6} term) in a power series solution to the differential equation

$$
3 y^{\prime \prime}+x y^{\prime}-4 y=0
$$

More room for Problem 7, if you need it.
8. Ordinary Points, Regular Singular Points, and Irregular Singular Points (5 points)
Determine if the point $x=0$ is an ordinary point, a regular singular point, or an irregular singular point for the linear differential equation

$$
x^{3} y^{\prime \prime}-x y^{\prime}+4 x y=0 .
$$

9. Endpoint Value Problems (10 points)

Find the eigenvalues and eigenfunctions corresponding to the nontrivial solutions of the endpoint value problem

$$
\begin{gathered}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=X(2)=0
\end{gathered}
$$

More room for Problem 9, if you need it.
10. Fourier Series (15 points)

Graph the odd extension of the function

$$
f(x)=\left\{\begin{array}{cc}
x & 0<x<1 \\
2-x & 1 \leq x<2
\end{array}\right.
$$

and find its Fourier sine series.

More room for Problem 10, if you need it.
11. The Heat Equation (10 points)

Find the solution to the partial differential equation

$$
\begin{gathered}
u_{t}=3 u_{x x}, \\
u(0, t)=u(2, t)=0, \\
u(x, 0)=\left\{\begin{array}{cc}
x & 0<x<1 \\
2-x & 1 \leq x<2
\end{array}\right.
\end{gathered}
$$

More room for Problem 11, if you need it.
12. Nonlinear Systems of ODEs (10 Points Extra Credit)

Find all the critical points of the system

$$
\begin{aligned}
& \frac{d x}{d t}=y^{2}-1 \\
& \frac{d y}{d t}=x^{3}-y
\end{aligned}
$$

and determine if each critical point is either stable or unstable.

More room for Problem 12, if you need it.

