Math 2280 - Exam 3

University of Utah

Fall 2013

Name:

\qquad
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

$$
\begin{gathered}
\text { Definitions } \\
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t . \\
f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau . \\
\text { Laplace Transforms } \\
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}} \\
\mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a} \\
\mathcal{L}(\sin (k t))=\frac{k}{s^{2}+k^{2}} \\
\mathcal{L}(\cos (k t))=\frac{s}{s^{2}+k^{2}} \\
\mathcal{L}(\delta(t-a))=e^{-a s} \\
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) . \\
\operatorname{Translation} \text { Formula } \\
\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a) . \\
\text { Derivative Formula } \\
\mathcal{L}\left(x^{(n)}\right)=s^{n} X(s)-s^{n-1} x(0)-s^{n-2} x^{\prime}(0)-\cdots-s x^{(n-2)}(0)-x^{(n-1)}(0) .
\end{gathered}
$$

1. (15 Points) Calculating a Laplace Transform

Calculate the Laplace transform of the function

$$
f(t)=t-4
$$

using the formal definition.
2. (15 Points) Convolutions

Calculate the the convolution $f(t) * g(t)$ of the following functions:

$$
f(t)=t \quad g(t)=\cos (t)
$$

3. (30 Points) Delta Functions and Laplace Transforms

Solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+4 x^{\prime}+4 x=1+\delta(t-2) . \\
x(0)=x^{\prime}(0)=0 .
\end{gathered}
$$

More room for Problem 3.

4. (10 Points) Singular Points

Determine whether the point $x=0$ is an ordinary point, a regular singular point, or an irregular singular point of the differential equation:

$$
x^{2}\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0 .
$$

5. (30 points) Power Series

Use power series methods to find the general solution to the differential equation:

$$
\left(x^{2}+2\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0 .
$$

State the recurrence relation and the guaranteed radius of convergence.

More room for problem 5.

