Math 2280 - Exam 1

University of Utah

Fall 2013

Name: Solution by Dylan Zwick
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (20 Points) Differential Equation Basics

(a) (5 points) What is the order of the differential equation given below? ${ }^{1}$

$$
x^{5} y^{(4)}+\left(e^{x^{2}}+7 x^{3}\right) y^{(3)}-\sin \left(y^{(5)}\right)+x^{2} y^{\prime}=y+x^{2}-2 x+7 y^{(2)}
$$

Solution: 5.
(b) (5 points) Is the differential equation given below linear?

$$
x^{2} y^{(3)}-2 x y^{\prime}+e^{x}=\sin (x) y^{\prime \prime}
$$

Solution: Yes.
(c) (10 points) On what intervals are we guaranteed a unique solution exists for the differential equation below?

$$
y^{\prime}+e^{x} y=\frac{x+2}{x-1}
$$

Solution - The function e^{x} is continuous everywhere, while the function $\frac{x+2}{x-1}$ is continuous at all points except $x=1$. So, there will exist a unique solution on the entire interval for any initial condition with x-value in the interval $(-\infty, 1)$ or $(1, \infty)$.

[^0]2. (10 points) Phase Diagrams

Find the critical points for the autonomous equation:

$$
\frac{d P}{d t}=k P(M-P)(P-H)
$$

where $k, M, H>0$ and $M>H$. Draw the corresponding phase diagram, and indicate if the critical points are stable, unstable, or semistable.

Solution - The function $k P(M-P)(P-H)$ has roots (zeros) at the points $P=0, H, M$. So, those are the critical points. The corresponding phase diagram is:

From this we see that 0 and M are stable critical points, while H is unstable.

3. (20 Points) Separable Equations

Find the solution to the initial value problem:

$$
\begin{gathered}
\frac{d y}{d x}=2 x e^{x^{2}-y} \\
y(0)=0
\end{gathered}
$$

Solution - We can rewrite the equation as:

$$
\frac{d y}{d x}=2 x e^{x^{2}} e^{-y}
$$

In this form we can see it's a separable differential equation. Getting all the y terms on the left side and the x terms on the right gives us:

$$
e^{y} d y=2 x e^{x^{2}} d x .
$$

Integrating both sides gives us:

$$
e^{y}=e^{x^{2}}+C .
$$

Taking the natural logarithm of both sides we get:

$$
y(x)=\ln \left(e^{x^{2}}+C\right) .
$$

Plugging in $x=0$ we get $y(0)=\ln (1+C)=0$, from which we get $C=0$. So, our solution is:

$$
y(x)=\ln \left(e^{x^{2}}\right)=x^{2}
$$

4. (15 points) Exact Equations

Find the solution to the initial value problem ${ }^{2}$:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{\cos (x)+y e^{x}}{e^{x}+2 y} \\
y(0)=2
\end{gathered}
$$

Solution - Taking our cue from the title of this problem, we can rewrite this ODE as:

$$
\left(\cos (x)+y e^{x}\right) d x+\left(e^{x}+2 y\right) d y=0
$$

We check that this equation is exact:

$$
\frac{\partial}{\partial y}\left(\cos (x)+y e^{x}\right)=e^{x}=\frac{\partial}{\partial x}\left(e^{x}+2 y\right) .
$$

So, the equation is exact. We want to find an equation $F(x, y)$ such that:

$$
\begin{gathered}
\frac{\partial F}{\partial x}=\cos (x)+y e^{x} \\
\text { and } \\
\frac{\partial F}{\partial y}=e^{x}+2 y
\end{gathered}
$$

For this to be true we must have:

[^1]$$
F(x, y)=\int\left(\cos (x)+y e^{x}\right) d x=\sin (x)+y e^{x}+g(y)
$$

Solving this for $g(y)$ we get:

$$
\frac{\partial F}{\partial y}=e^{x}+g^{\prime}(y)=e^{x}+2 y
$$

So, $g^{\prime}(y)=2 y$, and therefore $g(y)=y^{2}$. So, our solution is:

$$
\sin (x)+y e^{x}+y^{2}=C
$$

Plugging in $y(0)=2$ we get:

$$
\sin (0)+2 e^{0}+2^{2}=6=C .
$$

So, the solution to our initial value problem is:

$$
\sin (x)+y e^{x}+y^{2}=6 .
$$

5. (20 points) First-Order Linear Equations

Find a solution to the initial value problem given below, and give the interval upon which you know the solution is unique.

$$
\begin{aligned}
y^{\prime}+2 x y & =3 e^{-x^{2}} \\
y(0) & =4 .
\end{aligned}
$$

Solution - This is a linear first-order differential equation with integrating factor:

$$
\rho(x)=e^{\int 2 x d x}=e^{x^{2}} .
$$

Multiplying both sides of the ODE by this integrating factor gives us:

$$
\begin{gathered}
e^{x^{2}} y^{\prime}+2 x e^{x^{2}} y=3 \\
\Rightarrow\left(e^{x^{2}} y\right)^{\prime}=3 .
\end{gathered}
$$

Integrating both sides of the above equation gives us:

$$
e^{x^{2}} y=3 x+C \rightarrow y(x)=3 x e^{-x^{2}}+C e^{-x^{2}}
$$

If we plug in the initial condition $y(0)=4$ we get:

$$
y(0)=3(0) e^{0}+C e^{0}=C=4
$$

So, the solution to our initial value problem is:

$$
y(x)=3 x e^{-x^{2}}+4 e^{-x^{2}}=(3 x+4) e^{-x^{2}} .
$$

As both $2 x$ and $3 e^{-x^{2}}$ are continuous on the entire real line this is the unique solution on the entire real line \mathbb{R}.
6. (15 points) Euler's Method

Use Euler's method with step size $h=1$ to estimate the solution to the initial value problem

$$
\begin{gathered}
\frac{d y}{d x}=x^{2}+2 y-1 \\
y(0)=3
\end{gathered}
$$

at $x=2$.

Solution - Using Euler's method, the estimate after the first step will be:

$$
y(1) \approx 3+1\left(0^{2}+2(3)-1\right)=8
$$

The estimate after the second step will be:

$$
y(2) \approx 8+1\left(1^{2}+2(8)-1\right)=24
$$

So, our estimate is $y(2) \approx 24$.

[^0]: ${ }^{1}$ Extra credit - Solve this differential equation! Just kidding. Do not attempt to solve it.

[^1]: ${ }^{2}$ The title of this problem is a hint.

