Math 2280 - Exam 1

University of Utah

Fall 2013

Name:

\qquad
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (20 Points) Differential Equation Basics

(a) (5 points) What is the order of the differential equation given below? ${ }^{1}$

$$
x^{5} y^{(4)}+\left(e^{x^{2}}+7 x^{3}\right) y^{(3)}-\sin \left(y^{(5)}\right)+x^{2} y^{\prime}=y+x^{2}-2 x+7 y^{(2)}
$$

(b) (5 points) Is the differential equation given below linear?

$$
x^{2} y^{(3)}-2 x y^{\prime}+e^{x}=\sin (x) y^{\prime \prime}
$$

(c) (10 points) On what intervals are we guaranteed a unique solution exists for the differential equation below?

$$
y^{\prime}+e^{x} y=\frac{x+2}{x-1}
$$

[^0]2. (10 points) Phase Diagrams

Find the critical points for the autonomous equation:

$$
\frac{d P}{d t}=k P(M-P)(P-H)
$$

where $k, M, H>0$ and $M>H$. Draw the corresponding phase diagram, and indicate if the critical points are stable, unstable, or semistable.

3. (20 Points) Separable Equations

Find the solution to the initial value problem:

$$
\begin{gathered}
\frac{d y}{d x}=2 x e^{x^{2}-y} \\
y(0)=0
\end{gathered}
$$

4. (15 points) Exact Equations

Find the solution to the initial value problem ${ }^{2}$:

$$
\begin{gathered}
\frac{d y}{d x}=-\frac{\cos (x)+y e^{x}}{e^{x}+2 y} \\
y(0)=2
\end{gathered}
$$

[^1]
5. (20 points) First-Order Linear Equations

Find a solution to the initial value problem given below, and give the interval upon which you know the solution is unique.

$$
\begin{aligned}
y^{\prime}+2 x y & =3 e^{-x^{2}} \\
y(0) & =4 .
\end{aligned}
$$

6. (15 points) Euler's Method

Use Euler's method with step size $h=1$ to estimate the solution to the initial value problem

$$
\begin{gathered}
\frac{d y}{d x}=x^{2}+2 y-1 \\
y(0)=3
\end{gathered}
$$

at $x=2$.

[^0]: ${ }^{1}$ Extra credit - Solve this differential equation! Just kidding. Do not attempt to solve it.

[^1]: ${ }^{2}$ The title of this problem is a hint.

