
Math 2280 - Assignment 2

Dylan Zwick

Fall 2013

Section 1.5 - 1, 15, 21, 29, 38, 42

Section 1.6 - 1, 3, 13, 16, 22, 26, 31, 36, 56

Section 2.1 - 1, 8, 11, 16, 29

Section 2.2 - 1, 10, 21, 23, 24
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Section 1.5 - Linear First-Order Equations

1.5.1 Find the solution to the initial value problem

y′ + y = 2 y(0) = 0
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1.5.15 Find the solution to the initial value problem

y′ + 2xy = x, y(0) = −2.
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1.5.21 Find the solution to the initial value problem

xy′ = 3y + x4 cos x, y(2π) = 0.
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1.5.29 Express the general solution of dy/dx = 1+2xy in terms of the error
function

erf(x) =
2√
π

∫ x

0

e−t2dt.
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1.5.38 Consider the cascade of two tanks shown below with V1 = 100 (gal)
and V = 200 (gal) the volumes of brine in the two tanks. Each tank
also initially contains 50 lbs of salt. The three flow rates indicated in
the figure are each 5 gal/mm, with pure water flowing into tank 1.
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(a) Find the amount x(t) of salt in tank 1 at time t.

16



(b) Suppose that y(t) is the amount of salt in tank 2 at time t. Show
first that

dy

dt
=

5x

100
− 5y

200
.

and then solve for y(t), using the function x(t) found in part (a).
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(c) Finally, find the maximum amount of salt ever in tank 2.
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1.5.42 Suppose that a falling hailstone with density δ = 1 starts from rest
with negligible radius r = 0. Thereafter its radius is r = kt (k is a con-
stant) as it grows by accreation during its fall. Use Newton’s secon
d law - according to which the net force F acting on a possibly vari-
able mass m equals the time rate of change dp/dt of its momentum
p = mv - to set up and solve the initial value problem

d

dt
(mv) = mg, v(0) = 0,

where m is the variable mass of the hailstone, v = dy/dt is its velocity,
and the positive y-axis points downward. Then show that dv/dt =
g/4. Thus the hailstone falls as though it were under one-fourth the
influence of gravity.
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Section 1.6 - Substitution Methods and Exact Equa-

tions

1.6.1 Find the general solution of the differential equation

(x + y)y′ = x − y
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1.6.3 Find the general solution of the differential equation

xy′ = y + 2
√

xy
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1.6.13 Find the general solution of the differential equation

xy′ = y +
√

x2 + y2

Hint - You may find the following integral useful:

∫

ln (v +
√

1 + v2) = ln x + C.
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1.6.16 Find the general solution of the differential equation

y′ =
√

x + y + 1
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1.6.22 Find the general solution of the differential equation

x2y′ + 2xy = 5y4
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1.6.26 Find the general solution of the differential equation

3y2y′ + y3 = e−x
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1.6.31 Verify that the differential equation

(2x + 3y)dx + (3x + 2y)dy = 0

is exact; then solve it.
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1.6.36 Verify that the differential equation

(1 + yexy)dx + (2y + xexy)dy = 0

is exact; then solve it.
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1.6.56 Suppose that n 6= 0 and n 6= 1. Show that the substitutuion v = y1−n

transforms the Bernoulli equation

dy

dx
+ P (x)y = Q(x)yn

into the linear equation

dv

dx
+ (1 − n)P (x)v(x) = (1 − n)Q(x).
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Section 2.1 - Population Models

2.1.1 Separate variables and use partial fractions to solve the initial
value problem:

dx

dt
= x − x2 x(0) = 2.
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2.1.8 Separate variables and use partial fractions to solve the initial
value problem:

dx

dt
= 7x(x − 13) x(0) = 17.
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More space, if necessary, for problem 2.1.8.
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2.1.11 Suppose that when a certain lake is stocked with fish, the birth

and death rates β and δ are both inversely proportional to
√

P .

(a) Show that

P (t) =

(

1

2
kt +

√

P0

)2

.

(b) If P0 = 100 and after 6 months there are 169 fish in the lake,
how many will there be after 1 year?
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More space, if necessary, for problem 2.1.11.
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2.1.16 Consider a rabbit population P (t) satisfying the logistic equa-
tion dP/dt = aP − bP 2. If the initial population is 120 rabbits
and there are 8 births per month and 6 deaths per month oc-
curing at time t = 0, how many months does it take for P (t) to
reach 95% of the limiting population M?
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More space, if necessary, for problem 2.1.16.
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2.1.29 During the period from 1790 to 1930 the U.S. population P (t)
(t in years) grew from 3.9 million to 123.2 million. Through-
out this period, P (t) remained close to the solution of the initial
value problem

dP

dt
= 0.03135P − 0.0001489P 2, P (0) = 3.9.

(a) What 1930 population does this logistic equation predict?

(b) What limiting population does it predict?

(c) Has this logistic equation continued since 1930 to accurately
model the U.S. population?

[This problem is based on the computation by Verhulst, who in
1845 used the 1790-1840 U.S. population data to predict accu-
rately the U.S. population through the year 1930 (long after his
own death, of course).]

26



More space, if necessary, for problem 2.1.29.
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Section 2.2 - Equilibrium Solutions and Sta-

bility

2.2.1 - Find the critical points of the autonomous equation

dx

dt
= x − 4.

Then analyze the sign of the equation to determine whether
each critical point is stable or unstable, and construct the cor-
responding phase diagram for the differential equation. Next,
solve the differential equation explicitly for x(t) in terms of t.
Finally, use either the exact solution or a computer-generated
slope field to sketch typical solution curves for the given differ-
ential equation, and verify visually the stability of each critical
point.
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More space, if necessary, for problem 2.2.1.
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2.2.10 Find the critical points of the autonomous equation

dx

dt
= 7x − x2 − 10.

Then analyze the sign of the equation to determine whether
each critical point is stable or unstable, and construct the cor-
responding phase diagram for the differential equation. Next,
solve the differential equation explicitly for x(t) in terms of t.
Finally, use either the exact solution or a computer-generated
slope field to sketch typical solution curves for the given differ-
ential equation, and verify visually the stability of each critical
point.
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More space, if necessary, for problem 2.2.10.
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2.2.21 Consider the differential equation dx/dt = kx − x3.

(a) If k ≤ 0, show that the only critical value c = 0 of x is stable.

(b) If k > 0, show that the critical point c = 0 is now unstable,

but that the critical points c = ±
√

k are stable. Thus the
qualitative nature of the solutions changes at k = 0 as the
parameter k increases, and so k = 0 is a bifurcation point
for the differential equation with parameter k.

The plot of all points of the form (k, c) where c is a critical point
of the equation x′ = kx − x3 is the “pitchform diagram” show
in figure 2.2.13 of the textbook.
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More space, if necessary, for problem 2.2.21.
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2.2.23 Suppose that the logistic equation dx/dt = kx(M − x) models
a population x(t) of fish in a lake after t months during which
no fishing occurs. Now suppose that, because of fishing, fish
are removed from the lake at a rate of hx fish per month (with h
a positive constant). Thus fish are “harvested” at a rate propor-
tional to the existing fish population, rather than at the constant
rate of Example 4 from the textbook.

(a) If 0 < h < kM , show that the population is still logistic.
What is the new limiting population?

(b) If h ≥ kM , show that x(t) → 0 as t → ∞, so the lake is
eventually fished out.
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More space, if necessary, for problem 2.2.23.
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2.2.24 Separate variables in the logistic harvesting equation

dx/dt = k(N − x)(x − H)

and then use partial fractions to derive the solution given in
equation 15 of the textbook (also appearing in the lecture notes).
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More space, if necessary, for problem 2.2.24.
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