
Math 2280 - Assignment 15

Dylan Zwick

Fall 2013

Section 6.1 - 1, 5, 10, 18, 30

Section 6.2 - 1, 5, 8, 15, 31

Section 6.3 - 3, 4, 5, 6, 7
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Section 6.1 - Stability and the Phase Plane

In problems 6.1.1 and 6.1.5 find the critical point or points of the given
autonomous system, and then match the system with its phase portrait
among those given in the figures. (Figures on next page.)

6.1.1 -
dx

dt
= 2x − y,

dy

dt
= x − 3y.

6.1.5 -
dx

dt
= 1 − y2

dy

dt
= x + 2y.
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Problems

6.1 Stability and the Phase Plane 381
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FIGURE 6.1.12. Spiral point

(—2, 1) and saddle point (2, —1).
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FIGURE 6.1.14. Saddle point
(0,0).
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ItIGURE 6.1.15. Spiral point

(I), 0); saddle points (—2, —1) and
(2, 1).
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FIGURE 6.1.17. Spiral point
(— I, —1), saddle point (0,0), and
node (1, —1).

In Problems I through 8, find the critical point or points of the
given autonomous system, and thereby match each s’stem with
its phase portrait among Figs. 6.1.12 through 6.1.19.
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FIGURE 6.1.13. Spiral point
(I, — I).
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FIGURE 6.1.16. Node(l, I).
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FIGURE 6.1.18. Spiral point

(—2, ) and saddle point (2, —i).
FIGURE 6.1.19. Stable center
(—1,1).



6.1.10 - Find an equilibrium solution for the second-order differential equa-
tion

x′′ + 2x′ + x + 4x3 = 0,

and construct a phase portrait for the equivalent first-order system

x′ = y, y′ = −f(x, y).

Determine whether the critical point (x0, 0) looks like a center, a sad-
dle point, or a spiral point.
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6.1.18 - Solve the system of differential equations

dx

dt
= −y,

dy

dt
= 4x,

and determined whether the critical point (0, 0) is stable, asymptoti-
cally stable, or unstable. Construct a phase portrait for the system.
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6.1.30 - Suppose the solution (x1(t), y1(t)) to the system of differential equa-
tions

dx

dt
= F (x, y),

dy

dt
= G(x, y),

is defined for all t and that its trafectory has an apparent self-intersection:

x1(a) = x1(a + P ) = x0,

y1(a) = y1(a + P ) = y0

for some P > 0. Introduce the solution

x2(t) = x1(t + P ), y2(t) = y1(t + P )

and then apply the uniqueness theorem to show that

x1(t + P ) = x1(t), y1(t) = y1(t + P )

for all t. Thus the solution (x1(t), y1(t)) is periodic with period P and
has a closed trajectory. Consequently a solution of an autonomous
system is either periodic with a closed trajectory, or else its trajectory
never passes through the same point twice.
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More room for Problem 6.1.30.
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Section 6.2 - Linear and Almost Linear Systems

6.2.1 - Apply Theorem 1 from the textbook to determine the type of the
critical point (0, 0) for the system of differential equations

dx

dt
= −2x + y,

dy

dt
= x − 2y.

Verify your conclusion by constructing a phase portrait for the sys-
tem.
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6.2.5 - Apply Theorem 1 from the textbook to determine the type of the
critical point (0, 0) for the system of differential equations

dx

dt
= x − 2y,

dy

dt
= 2x − 3y.

Verify your conclusion by constructing a phase portrait for the sys-
tem.
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6.2.8 - Apply Theorem 1 from the textbook to determine the type of the
critical point (0, 0) for the system of differential equations

dx

dt
= x − 3y,

dy

dt
= 6x − 5y.

Verify your conclusion by constructing a phase portrait for the sys-
tem.
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6.2.15 - Find the critical point of the sytem of differential equations below.
Then apply Theorem 2 from the textbook to classify this critical point
as to type and stability. Verify your conclusion by constructing a
phase portrait for the system.

dx

dt
= x − y,

dy

dt
= 5x − 3y − 2.
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6.2.31 - For the system of differential equations

dx

dt
= y2

− 1,

dy

dt
= x3

− y

find all the critical points and investigate the type and stability of
each. Verify your conclusion by constructing a phase portrait for the
system.
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Section 6.3 - Ecological Models: Predators and Com-

petition

6.3.3 - Let X(t) be a harmful insect population (aphids?) that under natu-
ral conditions is held somewhat in check by a benign predator insect
population y(t) (ladybugs?). Assume that x(t) and y(t) satisfy the
predator-prey equations

dx

dt
= ax − pxy,

dy

dt
= −by + qxy.

So, the stable equilibrium populations are xE = b/q, yE = a/p. Now,
suppose that an insecticide is employed that kills (per unit time) the
same fraction f < a of each species of insect. Show that the harmful
population xE is increased, while the benign population yE is de-
creased, so the use of the insecticide is counterproductive. This is an
instance in which mathematical analysis reveals undesirable conse-
quences of a well-intentioned interference with nature.
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More room for Problem 6.3.3.
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For problems 6.3.4 through 6.3.7 we deal with the competition sys-
tem

dx

dt
= 60x − 4x2

− 3xy,

dy

dt
= 42y − 2y2

− 3xy,

in which c1c2 = 9 > 8 = b1b2, so the effect of competition should
exceed that of inhibition. Problems 6.3.4 through 6.3.7 imply that the
four critical points (0, 0), (0, 21), (15, 0), (6, 12) of the system resemble
those showin in figure 6.3.9 from the textbook - a nodal source at
the origin, a nodal sink at each coordinate axis, and a saddle point
interior to the first quadrant. In each of these problems construct
a phase portrait for the linearization at the indicated critical point.
Finally, construct a phase portrait for the nonlinear system.
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6.3.4 - Show that the coefficient matrix of the linearization

x′ = 60x,

y′ = 42y

of the system at (0, 0) has positive eigenvalues λ1 = 60 and λ2 = 42.
Hence (0, 0) is a nodal source.
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6.3.5 - Show that the linearizaion of the system at (0, 21) is

u′ = −3u,

v′ = −63u − 42v.

Then show that the coefficient matrix of this linear system has nega-
tive eigenvalues λ1 = −3 and λ2 = −42. Hence (0, 21) is a nodal sink
for the system.
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6.3.6 - Show that the linearization of the system at (15, 0) is

u′ = −60u − 45v,

4v′ = −3v.

Then show that the coefficient matrix of this linear system has nega-
tive eigenvalues λ1 = −60 and λ2 = −3. Hence (15, 0) is a nodal sink
for the system.
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6.3.7 - Show that the linearization of the system at (6, 12) is

u′ = −24u − 18v,

v′ = −36u − 24v.

Then show that the coefficient matrix of this linear system has eigen-
values λ1 = −24 − 18

√

2 < 0 and λ2 = 24 + 18
√

2 > 0. Hence (6, 12)
is a saddle point for the system.
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Draw the phase portrait for the system here.
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