Math 2280 - Assignment 12

Dylan Zwick
Fall 2013

Section 8.4-1,6, 8, 9, 14
Section 8.5-1, 5, 6, 13, 16

Section 8.4 - Method of Frobenius: The Exceptional Cases

8.4.1 - Either apply the method from Example 1 in the textbook to find two linearly independent Frobenius series solutions, or find one such solution and show (as in Example 2 from the textbook) that a second such solution does not exist for the differential equation:

$$
x y^{\prime \prime}+(3-x) y^{\prime}-y=0 .
$$

More room for Problem 8.4.1, if you need it.
8.4.6 - Either apply the method from Example 1 in the textbook to find two linearly independent Frobenius series solutions, or find one such solution and show (as in Example 2 from the textbook) that a second such solution does not exist for the differential equation:

$$
2 x y^{\prime \prime}-(6+2 x) y^{\prime}+y=0 .
$$

More room for Problem 8.4.6, if you need it.
8.4.8 - Either apply the method from Example 1 in the textbook to find two linearly independent Frobenius series solutions, or find one such solution and show (as in Example 2 from the textbook) that a second such solution does not exist for the differential equation:

$$
x(1-x) y^{\prime \prime}-3 y^{\prime}+2 y=0 .
$$

More room for Problem 8.4.8, if you need it.

8.4.9 - For the differential equation

$$
x y^{\prime \prime}+y^{\prime}-x y=0,
$$

first find the first four nonzero terms in a Frobenius series solution. Then use the reduction of order technique to find the logarithmic term and the first three nonzero terms in a second linearly independent solution.

More room for Problem 8.4.9, if you need it.
8.4.14 - For the differential equation

$$
x^{2} y^{\prime \prime}+x(1+x) y^{\prime}-4 y=0,
$$

first find the first four nonzero terms in a Frobenius series solution. Then use the reduction of order technique to find the logarithmic term and the first three nonzero terms in a second linearly independent solution.

More room for Problem 8.4.14, if you need it.

Section 8.5 - Bessel's Equation

8.5.1 - Differentiate termwise the series for $J_{0}(x)$ to show directly that $J_{0}^{\prime}(x)=-J_{1}(x)$ (another analogy with the cosine and sine functions).
8.5.5 - Express $J_{4}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$.
8.5.6 - Derive the recursion formula:

$$
\left[(m+r)^{2}-p^{2}\right] c_{m}+c_{m-2}=0
$$

for Bessel's equation.
8.5.13 - Any integral of the form $\int x^{m} J_{n}(x) d x$ can be evaluated in terms of Bessel functions and the indefinite integral $\int J_{0}(x) d x$. The latter integral cannot be simplified further, but the function $\int_{0}^{x} J_{0}(t) d t$ is tabulated in Table 11.1 of Abramowitz and Stegun. Use the identities:

$$
\begin{gathered}
d s \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x) \\
\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)
\end{gathered}
$$

to evaluate the integral

$$
\int x^{2} J_{0}(x) d x
$$

More room for Problem 8.5.13
8.5.16 - Same instructions as 8.5 .13 , only with the integral:

$$
\int x J_{1}(x) d x
$$

More room for Problem 8.5.16.

