Chapter 1

Quizzes

1.1 Number and Operation

Before we get started on algebra, let's check our understanding of the numbers we will be studying.

1. Mark the following numbers as *integers* (**Z**), *rational numbers* (**Q**), or *real numbers* (**R**). Many will belong to more than one group.

(a)	3	(f) $\sqrt{2}$
(b)	$\frac{4}{3}$	(g) 4.0
(c)	6	(h) π
(c) (d)	3	(i) -6
(a)	1.3	(;) 1
(e)	1.3	$(1) -\frac{1}{2}$

2. Plot the following values on the provided number line:

 $A = 5.0, B = -1/2, C = \sqrt{2}, D = -4.3, E = \pi$

1 1	1	1	1		1	1	1	1	1	1	1	
						1						
-5 -4	-3	-2	-1	0	1	2	3	4	5	6	7	

3. Evaluate the following expressions. Write any fractions in lowest terms.

(a)
$$-(-4)$$

(b) $\frac{9-5}{6}$
(c) $-|5|$
(c) $-|5|$
(c) $-|5|$
(c) $-|5|$
(c) $-|5|$
(c) $-|5|$
(c) $-|5|$

4. Perform the following computations, leaving answers in lowest terms, where applicable.

(a)
$$\frac{2}{3} + \frac{4}{5}$$

(b) $125 - (-327)$
(c) $4\frac{3}{4} - 3\frac{7}{8}$
(d) $4\frac{3}{4} \cdot 3\frac{7}{8}$
(e) $1.5 \cdot 2.25$
(f) $2.25 \div 1.5$
(g) $-81 \div 3$
(h) $(-91) \div (-13)$

5. Perform the following computations involving exponents:

(a)
$$2^4$$
 (c) $9^{-\frac{1}{2}}$
(b) 2^{-4} (c) 9^2 (c) 9^2 (c) $9^{\frac{1}{2}}$ (c) $(-4)^2$

6. Perform the following computations. Be sure to observe the correct order of operations.

(a)
$$6-3+2$$

(b) $6\div 3\cdot 2$
(c) $(14-5)^2$
(d) $\frac{4^3-2\cdot 5}{6-4\div 2}$

7. Find the distance between the given numbers along the number line.

(a)
$$5,2$$
 (c) $-5,-2$
(b) $-5,2$ (d) $5,-2$

1.2 Expressions

1. Simplify the following expressions:

(a)
$$2x + 3y - (x + y)$$

(b) $-3x + \frac{y}{2} - (y - 2x)$
(c) $\frac{2x}{4}$

- 2. Write an expression for each of the following:
 - (a) The number of eggs I have total if I have *d* dozen and *e* more eggs.
 - (b) The amount of money I have left if I started with d dimes and spent c cents.

1.3 Polynomial expressions

1.3.1 Multiplying

Multiply out and write in standard form:

1.
$$(x-2)(5x-2)$$
4. $3(x-2)(x+3)$ 2. $(x-1)^2(x+2)$ 5. $(5x+3)(x^2-3x-4)$ 3. $(x-2)^3$ 6. $(9-6i)^2$ (here $i^2 = 1$)

1.3.2 Factoring

Factor as completely as possible:

1.
$$x^2 + 7xy - 144y^2$$
4. $36x^3 + 12x^2 - 48x$ 2. $10x^2 + 6xy - 25xy - 15y^2$ 5. $x^3 + 3x^2 - x - 3$ 3. $3x^3y^2 - 75xy^2$ 6. $x^4 - y^4$

You'll get lots more factoring practice in later sections.

1.4 Rational expressions

Simplify the following rational expressions as completely as possible:

1.
$$\frac{2x^{2} + 5x - 3}{x^{2} + 2x - 3}$$
4.
$$\frac{4x - 48}{x^{2} - 144}$$
2.
$$\frac{-4x^{3}y^{2}}{2x^{2}y^{3}} \cdot \frac{-4xy^{3}}{10xy^{2}}$$
5.
$$\frac{x^{2} - 9}{2x + 2} \cdot \frac{x^{2} + 2x + 1}{(x - 3)(x + 1)}$$
3.
$$\frac{3}{x - 2} + \frac{3x}{2x + 3}$$
6.
$$\frac{x^{2} + x - 2}{3x^{2} - 9x} \div \frac{x^{2} + 4x - 5}{6x - 18} \cdot \frac{x^{2} + 2x - 15}{x^{2} - x - 6}$$

1.4.1 Complex fractions

It's not considered good mathematical writing to have fractions living inside of other fractions. Such expressions are called *complex fractions*. Have no fear: a fraction bar signifies division, so one fraction over another can be rewritten as a division of fractions problem.

Write these as simple fractions:

1.
$$\frac{\frac{x+5}{3x^2}}{\frac{x^2-25}{6x^3}}$$
3.
$$\frac{\frac{5}{x-5}+\frac{3}{x+3}}{\frac{5}{x+3}+\frac{3}{x-5}}$$
2.
$$\frac{4+\frac{1}{2}}{\frac{1}{3}+\frac{1}{6}}$$

1.5 Radical expressions

Simplify the following expressions involving radicals completely.

Simplify these expressions involving complex numbers and write them in standard form.

1.
$$i^{37}$$
 3. $\frac{2+3i}{4-i}$

4. $\sqrt{-32}$ 2. (2+3i)(4-i)

Linear equations and inequalities 1.6

1.6.1 Equations

Solve for *x*:

1.
$$3x + 4 = 6 - x$$

2. $-3x + 4 = 6 - x$
3. $\frac{3}{x} = \frac{9}{14}$
4. $\frac{x}{7} = \frac{3}{5}$
5. $\frac{3 + x}{5} = \frac{7}{10}$
6. $\frac{3 - x}{x} = \frac{3}{5}$
7. $\frac{x - 2}{4} = \frac{x + 1}{12}$

1.6.2 Harder Equations

Solve for *x*:

1.
$$\frac{x}{3} - 2 = \frac{3}{10}$$

2. $\frac{2x - 3}{5} + x = \frac{4 - x}{4} + 3$
3. $\frac{2}{x - 1} = \frac{8}{3x + 6}$
4. $\frac{3x + 3}{3} = \frac{2x + 2}{2}$
5. $\frac{3x + 3}{3} = \frac{2x + 3}{2}$
6. $\frac{1}{x + 3} - 2 = 5$

1.6.3 Inequalities

Solve for *x*, writing your answer in interval notation:

4. $\frac{3+x}{5} \le \frac{7}{10}$ 1. 3x + 4 < 6 - x2. $-3x + 4 \ge 6 - x$ 5. $\frac{x-2}{4} \ge \frac{x+1}{12}$ 3. $\frac{x}{7} < \frac{3}{5}$ 6. $-3 < 2x + 5 \le 7$

Systems of linear equations 1.7

Find the values of x and y that satisfy the following equations simultaneously.

1. 3. $\begin{cases} 2x + 3y = 7 \\ y = 4 \end{cases}$ $\begin{cases} 2x - 3y = 5\\ 6x - 9y = 4 \end{cases}$ 2. 4. $\begin{cases} 0.4x + 0.6y = 3.2 \\ 1.4x - 0.3y = 1.6 \end{cases}$ $\begin{cases} 2x - 3y = 5 \\ -6x + 9y = -15 \end{cases}$

5.
$$\begin{cases} 2x - 3y + z = 5\\ 2y + z = 4\\ z = -2 \end{cases}$$
6.
$$\begin{cases} 2x - 3y + z = 1\\ x + 2y + z = -1\\ 3x - y + 3z = 4 \end{cases}$$

Absolute Value Equations and Inequalities 1.8

1.8.1 Equations

Solve the following for x, noting that some equations may have multiple (or no) solutions.

1.
$$|3x-2| = 6$$

2. $\left|\frac{3-x}{3}\right| - 4 = -2$
3. $|x+5| + 7 = 5$
4. $2 - \left|\frac{x}{5} - 1\right| = 1$
5. $|2x+3| = |3x-2|$

1.8.2 Inequalities

Solve the following for x, writing your answers in interval notation. Then graph your solutions.

1. |3x - 4| < 64. $|-x-5|+5 \le 3$ 5. |2x+5| > -32. $|4 - x| \ge 3$ 6. $2 < \left| \frac{x+2}{3} - 1 \right| < 4$ 3. $|2 - 3x| \le 6$

1.9 **Functions and graphs**

1.9.1 **Functions**

Do the following equations, tables, or graphs represent y as a function of x?

- 1. y = 2x 3
- 2. $3x 2y^2 = -3$
- 3. $x^2 + y^5 = -1$
- 4. $x = \sqrt{y} + 1$
- 5.

x	y
-2	4
-1	1
0	0
1	1
2	4

x	у
-2	4
-1	4
0	4
1	4
2	4
	$ \begin{array}{c} x \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \end{array} $

7.

6.

x	y
-1	4
-1	1
0	0
1	1
1	4

x	y
-2	4
-1	4
0	4
1	4
2	4

$$f(x) = \frac{1}{1-x}, g(x) = x^2 + 1$$

- 1. Find the domain of f(x).
- 2. Find the domain of g(x).
- 3. Find and simplify f(x)/g(x), and give its domain.
- 4. Find and simplify g(x)/g(x), and give its domain.
- 5. Find and simplify $(f \circ g)(x)$ and give its domain.
- 6. Find and simplify $(g \circ f)(x)$ and give its domain.

1.9.2 Translation and reflection of graphs

Sketch the graphs of the following:

1. $y = -(x+2)^2 - 3$ 4. $y = (x-2)^3 - 3$ 2. $y = (x-3)^2 + 5$ 5. $y = -(x+2)^3$ 3. y = |x-1| + 46. $y = \frac{-1}{x+3}$

1.10 Graphs of linear equations and inequalities

1.10.1 Drawing graphs

Sketch the graphs of the following linear equations or inequalities.

- 1. y = 2x + 3 3. y = 2 3x
- 2. $y = -\frac{1}{2}x 2$ 4. 2x + 3y = 6

6

- 7. Evaluate f(-2).
- 8. Evaluate g(-2).
- 9. Evaluate f(1/x) and write the result as a simple fraction.
- 10. Find $f^{-1}(x)$
- 11. Why does g not have an inverse?
- 12. Find the inverse of the function

$$h(x) = \frac{2x-3}{x+5}$$

5.
$$x = 4$$

6. $0.2x + 0.6y = 1.2$
7. $y < -\frac{1}{2}x + 4$
9. $x > 2y - 5$

Finding equations of lines 1.10.2

Find the equations of lines (in slope-intercept form)

- 1. slope=-2, y-intercept (0,-1)
- 2. through the points (-1,3) and (2,-2)

3. through the points (1,1) and (1,-5)

4. with y-intercept (0,3) and parallel to y = 2x - 4

5

- 5. through (-1,1) and perpendicular to 2x + y = 5
- 6. through (2,-3) and perpendicular to y = 4

1.11 **Polynomial equations**

Solve for *x*:

1. $x^2 - 2x + 1 = 0$ 11. $x^4 - 2x^2 + 1 = 0$ 2. $x^2 - 8x + 7 = 0$ 12. $x - 8\sqrt{x} + 7 = 0$ 3. $x^2 - 5x = 6$ 13. $x^3 - 5x^2 = 6x$ 4. $x^2 - 2x = 0$ 14. $x^4 - 4x^2 = 0$ 5. $x^2 - \frac{1}{4} = 0$ 15. $(x-2)^2 = 7$ 16. $x^2 - 2x - 5 = 0$ 6. $x^2 + 16 = 0$ 17. $x^2 + 7x + 3 = 0$ 7. $3x^2 + 6x = 24$ 18. $x^2 + 2x + 3 = 0$ 8. $2x^2 - 3x - 2 = 0$ 19. $x^2 + 14x + 49 = 0$ 9. $6x^2 = 7x + 3$ 20. $x^2 - 14x + 49 = 0$ 10. $12x^2 - 13x + 3 = 0$

1.12 **Graphs of quadratic functions**

- 1. Write $y = 2(x-1)^2 + 4$ in the form $y = ax^2 + bx + c$.
- 2. Write $y = 2x^2 + 4x + 5$ in the form $y = a(x-h)^2 + k$.
- 3. Find the coordinates of the vertex of the parabola $y = 2(x-1)^2 + 4$
- 4. Find the coordinates of the vertex of the parabola $y = 2x^2 + 4x + 5$.

- 5. Find the equation of a parabola with vertex (-1,3) with y-intercept (0,-2).
- 6. Find the equation of a parabola with roots -2and 3.
- 7. Graph $y = 2(x-1)^2 + 4$.
- 8. Graph $y = 2x^2 + 4x + 5$.

1.13 **Equations involving radicals**

Solve for the variable:

1.
$$3\sqrt{5-2x} = 9$$

2. $\sqrt{2x+1} + 1 = 4$
3. $y-2 = \sqrt{y+4}$

These next two are pretty hard. They're probably a bit above 1010 level. Try them!

1.
$$\sqrt{5t} = 1 + \sqrt{5(t-1)}$$
 2. $\sqrt{1+6x} = 2 - \sqrt{6x}$

1.14 **Exponential and Logarithmic functions**

Evaluate:

1.
$$8^{2/3}$$
6. $\left(\frac{4}{9}\right)^{3/2}$ 2. $8^{-2/3}$ 7. $\log_2(1/2)$ 3. $(-8)^{2/3}$ 8. $\log_3 27$ 4. $(-8)^{-2/3}$ 8. $\log_3 27$ 5. $-8^{2/3}$ 9. $\log_9 3$

Solve:

1.
$$\log x = -3$$
5. $\log_3 9x = 3$ 2. $\log_2 x = -\frac{1}{2}$ 6. $e^{2x} - 3e^x = 28$ 3. $e^{2x} - 2 = 0$ 7. $\log(x+1) - \log(x-1) = \log 3$ 4. $8 - 3 \cdot 2^{0.5x} = -40$ 8. $\ln(x^2 - 4) - \ln(x+2) = \ln(3-x)$

Combine the logarithms into a single logarithm:

1.
$$\frac{1}{2}\log_2 x + \log_2 y$$
 2. $3\log x - 2\log y - \log z$

Expand the single logarithm as fully as possible:

1.
$$\log\left(\frac{x\sqrt{y}}{z}\right)$$
 2. $\log_4 4x^2y^3$

5.
$$\log_3 9x = 3$$

6. $e^{2x} - 3e^x = 28$
7. $\log(x+1) - \log(x-1) = \log 3$
8. $\ln(x^2 - 4) - \ln(x+2) = \ln(3 - x)$

$$2 \log 4r^2v^3$$