Chapter 1

Quizzes

1.1 Number and Operation

Before we get started on algebra, let's check our understanding of the numbers we will be studying.

1. Mark the following numbers as integers (\mathbf{Z}), rational numbers (\mathbf{Q}), or real numbers (\mathbf{R}). Many will belong to more than one group.
(a) 3
(f) $\sqrt{2}$
(b) $\frac{4}{3}$
(g) 4.0
(c) $\frac{6}{3}$
(h) π
(d) 1.3
(i) -6
(e) $1 . \overline{3}$
(j) $-\frac{1}{2}$
2. Plot the following values on the provided number line:
3. Evaluate the following expressions. Write any fractions in lowest terms.
(a) $-(-4)$
(c) $-|5|$
(b) $\frac{9-5}{6}$
(d) $-|-5|$
(e) $|7-5|$
4. Perform the following computations, leaving answers in lowest terms, where applicable.
(a) $\frac{2}{3}+\frac{4}{5}$
(e) $1.5 \cdot 2.25$
(b) $125-(-327)$
(f) $2.25 \div 1.5$
(c) $4 \frac{3}{4}-3 \frac{7}{8}$
(g) $-81 \div 3$
(d) $4 \frac{3}{4} \cdot 3 \frac{7}{8}$
(h) $(-91) \div(-13)$
5. Perform the following computations involving exponents:
(a) 2^{4}
(e) $9^{-\frac{1}{2}}$
(b) 2^{-4}
(c) 9^{2}
(f) -4^{2}
(d) $9^{\frac{1}{2}}$
(g) $(-4)^{2}$
6. Perform the following computations. Be sure to observe the correct order of operations.
(a) $6-3+2$
(c) $(14-5)^{2}$
(b) $6 \div 3 \cdot 2$
(d) $\frac{4^{3}-2 \cdot 5}{6-4 \div 2}$
7. Find the distance between the given numbers along the number line.
(a) 5,2
(c) $-5,-2$
(b) $-5,2$
(d) $5,-2$

1.2 Expressions

1. Simplify the following expressions:
(a) $2 x+3 y-(x+y)$
(b) $-3 x+\frac{y}{2}-(y-2 x)$
(c) $\frac{2 x}{4}$
2. Write an expression for each of the following:
(a) The number of eggs I have total if I have d dozen and e more eggs.
(b) The amount of money I have left if I started with d dimes and spent c cents.

1.3 Polynomial expressions

1.3.1 Multiplying

Multiply out and write in standard form:

1. $(x-2)(5 x-2)$
2. $(x-1)^{2}(x+2)$
3. $(x-2)^{3}$
4. $3(x-2)(x+3)$
5. $(5 x+3)\left(x^{2}-3 x-4\right)$
6. $(9-6 i)^{2}\left(\right.$ here $\left.i^{2}=1\right)$

1.3.2 Factoring

Factor as completely as possible:

1. $x^{2}+7 x y-144 y^{2}$
2. $10 x^{2}+6 x y-25 x y-15 y^{2}$
3. $3 x^{3} y^{2}-75 x y^{2}$
4. $36 x^{3}+12 x^{2}-48 x$
5. $x^{3}+3 x^{2}-x-3$
6. $x^{4}-y^{4}$

You'll get lots more factoring practice in later sections.

1.4 Rational expressions

Simplify the following rational expressions as completely as possible:

1. $\frac{2 x^{2}+5 x-3}{x^{2}+2 x-3}$
2. $\frac{-4 x^{3} y^{2}}{2 x^{2} y^{3}} \cdot \frac{-4 x y^{3}}{10 x y^{2}}$
3. $\frac{3}{x-2}+\frac{3 x}{2 x+3}$
4. $\frac{4 x-48}{x^{2}-144}$
5. $\frac{x^{2}-9}{2 x+2} \cdot \frac{x^{2}+2 x+1}{(x-3)(x+1)}$
6. $\frac{x^{2}+x-2}{3 x^{2}-9 x} \div \frac{x^{2}+4 x-5}{6 x-18} \cdot \frac{x^{2}+2 x-15}{x^{2}-x-6}$

1.4.1 Complex fractions

It's not considered good mathematical writing to have fractions living inside of other fractions. Such expressions are called complex fractions. Have no fear: a fraction bar signifies division, so one fraction over another can be rewritten as a division of fractions problem.
Write these as simple fractions:

1. $\frac{\frac{x+5}{3 x^{2}}}{\frac{x^{2}-25}{6 x^{3}}}$
2. $\frac{4+\frac{1}{2}}{\frac{1}{3}+\frac{1}{6}}$
3. $\frac{\frac{5}{x-5}+\frac{3}{x+3}}{\frac{5}{x+3}+\frac{3}{x-5}}$

1.5 Radical expressions

Simplify the following expressions involving radicals completely.

1. $3 \sqrt{75}+4 \sqrt{12}$
2. $\left(\sqrt{14 x^{3} y}\right)\left(\sqrt{7 x^{3} y^{3}}\right)$
3. $\sqrt{\frac{375 x^{5}}{5 x}}$
4. $(4 \sqrt{5}-2)(2 \sqrt{5}+4)$
5. $\sqrt[3]{x y^{5}} \sqrt[3]{x^{7} y^{17}}$
6. $\frac{\sqrt[5]{320 x^{13} y^{18}}}{\sqrt[5]{10 x^{3} y^{3}}}$
7. $\sqrt{16 x^{2}+4}$

Simplify these expressions involving complex numbers and write them in standard form.

1. i^{37}
2. $(2+3 i)(4-i)$
3. $\frac{2+3 i}{4-i}$
4. $\sqrt{-32}$

1.6 Linear equations and inequalities

1.6.1 Equations

Solve for x :

1. $3 x+4=6-x$
2. $-3 x+4=6-x$
3. $\frac{3}{x}=\frac{9}{14}$
4. $\frac{x}{7}=\frac{3}{5}$
5. $\frac{3+x}{5}=\frac{7}{10}$
6. $\frac{3-x}{x}=\frac{3}{5}$
7. $\frac{x-2}{4}=\frac{x+1}{12}$

1.6.2 Harder Equations

Solve for x :

1. $\frac{x}{3}-2=\frac{3}{10}$
2. $\frac{2 x-3}{5}+x=\frac{4-x}{4}+3$
3. $\frac{2}{x-1}=\frac{8}{3 x+6}$
4. $\frac{3 x+3}{3}=\frac{2 x+2}{2}$
5. $\frac{3 x+3}{3}=\frac{2 x+3}{2}$
6. $\frac{1}{x+3}-2=5$

1.6.3 Inequalities

Solve for x, writing your answer in interval notation:

1. $3 x+4<6-x$
2. $-3 x+4 \geq 6-x$
3. $\frac{x}{7}<\frac{3}{5}$
4. $\frac{3+x}{5} \leq \frac{7}{10}$
5. $\frac{x-2}{4} \geq \frac{x+1}{12}$
6. $-3<2 x+5 \leq 7$

1.7 Systems of linear equations

Find the values of x and y that satisfy the following equations simultaneously.
1.

$$
\left\{\begin{aligned}
2 x+3 y & =7 \\
y & =4
\end{aligned}\right.
$$

2.

$$
\left\{\begin{array}{l}
0.4 x+0.6 y=3.2 \\
1.4 x-0.3 y=1.6
\end{array}\right.
$$

3.

$$
\left\{\begin{array}{l}
2 x-3 y=5 \\
6 x-9 y=4
\end{array}\right.
$$

4.

$$
\left\{\begin{array}{ccc}
2 x-3 y & =5 \\
-6 x+9 y & = & -15
\end{array}\right.
$$

5.

$$
\left\{\begin{aligned}
2 x-3 y+z & =5 \\
2 y+z & =4 \\
z & =-2
\end{aligned}\right.
$$

6.

$$
\left\{\begin{array}{c}
2 x-3 y+z=1 \\
x+2 y+z= \\
3 x-1 \\
3 x+3 z=4
\end{array}\right.
$$

1.8 Absolute Value Equations and Inequalities

1.8.1 Equations

Solve the following for x, noting that some equations may have multiple (or no) solutions.

1. $|3 x-2|=6$
2. $\left|\frac{3-x}{3}\right|-4=-2$
3. $|x+5|+7=5$
4. $2-\left|\frac{x}{5}-1\right|=1$
5. $|2 x+3|=|3 x-2|$

1.8.2 Inequalities

Solve the following for x, writing your answers in interval notation. Then graph your solutions.

1. $|3 x-4|<6$
2. $|4-x| \geq 3$
3. $|2-3 x| \leq 6$
4. $|-x-5|+5 \leq 3$
5. $|2 x+5|>-3$
6. $2<\left|\frac{x+2}{3}-1\right|<4$

1.9 Functions and graphs

1.9.1 Functions

Do the following equations, tables, or graphs represent y as a function of x ?

1. $y=2 x-3$
2. $3 x-2 y^{2}=-3$
3. $x^{2}+y^{5}=-1$
4. $x=\sqrt{y}+1$
5.

x	y
-2	4
-1	1
0	0
1	1
2	4

6.

x	y
-2	4
-1	4
0	4
1	4
2	4

7.

x	y
-1	4
-1	1
0	0
1	1
1	4

8.

9.

For the next problems,

$$
f(x)=\frac{1}{1-x}, g(x)=x^{2}+1
$$

1. Find the domain of $f(x)$.
2. Find the domain of $g(x)$.
3. Find and simplify $f(x) / g(x)$, and give its domain.
4. Find and simplify $g(x) / g(x)$, and give its domain.
5. Find and simplify $(f \circ g)(x)$ and give its domain.
6. Find and simplify $(g \circ f)(x)$ and give its domain.
7. Evaluate $f(-2)$.
8. Evaluate $g(-2)$.
9. Evaluate $f(1 / x)$ and write the result as a simple fraction.
10. Find $f^{-1}(x)$
11. Why does g not have an inverse?
12. Find the inverse of the function

$$
h(x)=\frac{2 x-3}{x+5}
$$

1.9.2 Translation and reflection of graphs

Sketch the graphs of the following:

1. $y=-(x+2)^{2}-3$
2. $y=(x-3)^{2}+5$
3. $y=|x-1|+4$
4. $y=(x-2)^{3}-3$
5. $y=-(x+2)^{3}$
6. $y=\frac{-1}{x+3}$

1.10 Graphs of linear equations and inequalities

1.10.1 Drawing graphs

Sketch the graphs of the following linear equations or inequalities.

1. $y=2 x+3$
2. $y=-\frac{1}{2} x-2$
3. $y=2-3 x$
4. $2 x+3 y=6$
5. $x=4$
6. $0.2 x+0.6 y=1.2$
7. $y<-\frac{1}{2} x+4$

1.10.2 Finding equations of lines

Find the equations of lines (in slope-intercept form)

1. slope $=-2, y$-intercept $(0,-1)$
2. through the points $(-1,3)$ and $(2,-2)$
3. through the points $(1,1)$ and $(1,-5)$

1.11 Polynomial equations

Solve for x :

1. $x^{2}-2 x+1=0$
2. $x^{2}-8 x+7=0$
3. $x^{2}-5 x=6$
4. $x^{2}-2 x=0$
5. $x^{2}-\frac{1}{4}=0$
6. $x^{2}+16=0$
7. $3 x^{2}+6 x=24$
8. $2 x^{2}-3 x-2=0$
9. $6 x^{2}=7 x+3$
10. $12 x^{2}-13 x+3=0$

1.12 Graphs of quadratic functions

1. Write $y=2(x-1)^{2}+4$ in the form $y=a x^{2}+b x+c$.
2. Write $y=2 x^{2}+4 x+5$ in the form $y=a(x-h)^{2}+k$.
3. Find the coordinates of the vertex of the parabola $y=2(x-1)^{2}+4$
4. Find the coordinates of the vertex of the parabola $y=2 x^{2}+4 x+5$.
5. $2 x-4 y \geq 3$
6. $x>2 y-5$
7. with y-intercept $(0,3)$ and parallel to $y=2 x-4$
8. through $(-1,1)$ and perpendicular to $2 x+y=5$
9. through $(2,-3)$ and perpendicular to $y=4$

1.13 Equations involving radicals

Solve for the variable:

1. $3 \sqrt{5-2 x}=9$
2. $\sqrt{2 x+1}+1=4$
3. $y-2=\sqrt{y+4}$

These next two are pretty hard. They're probably a bit above 1010 level. Try them!

1. $\sqrt{5 t}=1+\sqrt{5(t-1)}$
2. $\sqrt{1+6 x}=2-\sqrt{6 x}$

1.14 Exponential and Logarithmic functions

Evaluate:

1. $8^{2 / 3}$
2. $8^{-2 / 3}$
3. $(-8)^{2 / 3}$
4. $(-8)^{-2 / 3}$
5. $-8^{2 / 3}$
6. $\left(\frac{4}{9}\right)^{3 / 2}$
7. $\log _{2}(1 / 2)$
8. $\log _{3} 27$
9. $\log _{9} 3$

Solve:

1. $\log x=-3$
2. $\log _{2} x=-\frac{1}{2}$
3. $e^{2 x}-2=0$
4. $8-3 \cdot 2^{0.5 x}=-40$
5. $\log _{3} 9 x=3$
6. $e^{2 x}-3 e^{x}=28$
7. $\log (x+1)-\log (x-1)=\log 3$
8. $\ln \left(x^{2}-4\right)-\ln (x+2)=\ln (3-x)$

Combine the logarithms into a single logarithm:

1. $\frac{1}{2} \log _{2} x+\log _{2} y$
2. $3 \log x-2 \log y-\log z$

Expand the single logarithm as fully as possible:

1. $\log \left(\frac{x \sqrt{y}}{z}\right)$
2. $\log _{4} 4 x^{2} y^{3}$
