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This lab should be a pretty quick lab. It’s goal is to introduce you to
one of the coolest ideas in mathematics, the Fourier series, and have you
play around with them a little bit. We won’t see much more about Fourier
series in this class, but you should at least see them once.

The Idea of Fourier Series

Let v =< v1, v2, v3 > be a vector in R
3. The vectors î =< 1, 0, 0 >, ĵ =<

0, 1, 0 >, k̂ =< 0, 0, 1 > are an orthonormal basis for R
3, and v can be

expressed as a linear combination of these vectors:

v = v1î + v2ĵ + v3k̂

Similarly, for any orthonormal basis a1, a2, a3 we can write v as a linear
combination

v = (v · a1)a1 + (v · a2)a2 + (v · a3)a3.

Even more generally, we can do this for any orthogonal basis using our
projection formulae. If a1, a2, a3 form a basis of orthogonal vectors, we can
write v as a linear combination
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v =

(

v · a1

a1 · a1

)

a1 +

(

v · a2

a2 · a2

)

a2 +

(

v · a3

a3 · a3

)

a3.

In this lab we’re going to do something new. We’re going to be rewrit-
ing vectors in terms of an orthonormal basis, but the vector space will
consist of all 2π-periodic functions. You can verify this is a vector space.
First, we need to find a basis. It turns out that this vector space is infinite
dimensional.

An Orthogonal Basis

We first define an inner product of vectors in our vector space. If f and g

are two 2π periodic function, we define their inner product to be:

< f, g >=

∫

2π

0

f(x)g(x)dx.

Now, I clain that a basis for the vector space is given by the following
infinite list of functions:

cos (mx) for m = 0, 1, 2, . . .

sin (nx) for n = 1, 2, . . .

These vectors are all 2π-periodic functions, so they are all in our vector
space. As n > 0 they are all non-zero vectors.

These functions are linearly independent. In fact, they form an orthog-
onal set. It’s a calculus II exercise to verify:

∫

2π

0

cos (mx) cos (nx)dx = 0 for m 6= n

∫

2π

0

sin (mx) sin (nx)dx = 0 for m 6= n

∫

2π

0

cos (mx) sin (nx)dx = 0
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These vectors are not, however, of unit length. It’s another calculus
exercise to verify

∫

2π

0

cos (0x) cos (0x)dx =

∫

2π

0

1 · 1dx = 2π

∫

2π

0

cos (mx) cos (mx)dx = π for m 6= 0

∫

2π

0

sin (nx) sin (nx)dx = π for n 6= 0

That these vectors (functions) are a spanning set for a vector space of
2π-periodic functions is Fourier’s Theorem. There are some technicalities
we will ignore. It works.

Expressing a Function In Terms of the Basis

Given a “nice” 2π-periodic function f(x), we want to express it in terms
of the basis of sine and cosine functions. For each m = 0, 1, . . . and n =
1, 2, . . . we need to find the cos (mx) and sin (nx) parts of f . We do this
with the usual projection formula.

For any m = 0, 1, . . . , the cos (mx) part of f is a
m

cos (mx) where

a
m

=
< f, cos (mx) >

< cos (mx), cos (mx) >
=

{

1

2π

∫

2π

0
f cos (mx)dx m = 0

1

π

∫

2π

0
f cos (mx)dx m > 0

Similarly, for n = 1, 2, . . . the sin (nx) part of f is b
n
sin (nx) where

b
n

=
< f, sin (nx) >

< sin (nx), sin (nx) >
=

1

π

∫

2π

0

f sin (nx)dx

Then the function f can be written as a sum of its parts as

f(x) ≈ a0 cos (0x) + a1 cos (1x) + b1 sin (1x) + a2 cos (2x) + b2 sin (2x) + · · ·
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Here is an example. Let f(x) be the 2π-periodic funcitons whose value
is π between 0 and π and −π from π to 2π. In Maple, define this piecewise
so that it is correct on the interval from −2π to 2π and plot it:

f := x->piecewise(x <=-Pi,Pi,x<0,-Pi,x<=Pi,Pi,-Pi);

plot(f(x),x=-2Pi..2Pi,discont = false, thickness = 3);

The graph f is described as a “square wave”. When you see it, you’ll
know why.

The sine parts we fine by computing

b
n

=
1

π

∫

2π

0

f(x) sin (nx)dx =
4

2n − 1

The fact that f is an odd function implies that all the cosine parts (the
even parts) are 0.

So, we claim

f(x) ≈
4

1
sin (1x) +

4

3
sin (3x) +

4

5
sin (5x) + · · ·

This is called the Fourier Series for our square wave, as as we take more
and more terms, it gets closer and closer to approximating our function.
Try plotting the first four Fourier Sums on the same axes with f :

plot([f(x),4sin(x)] x=-2Pi..2Pi,discont = false, color = [red,blue], thickness
= [3,1]);

plot([f(x),4(sin(x) + 1/3 sin(3x))],x=-2Pi..2Pi,discont = false, color =
[red,blue], thickness = [3,1];

etc...
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Let’s parse this Maple command: the first argument of the “plot” func-
tion is a list, in square brackets, of 2 functions to plot, separated by com-
mas. The next argument says to display the plot on x-values from −2π to
2π (the y-values will be determined automatically). The remaining argu-
ments specify options. “discont = false” says to draw the graphs as if they
were continuous, even though f , for instance, is not continuous. “color”
and “thickness” define these attributes for the graphs of the correspond-
ing functions. The first function from the list will be graphed with color
red and thickness 3, etc.

What You Should Hand In

This lab is just designed to be a fun “playing with Fourier series” lab. We
won’t do Fourier series in this class after this, but you’ll definitely see them
if you take 2280 next semester. It’s cool to see them and how they work at
some point.

What you should hand in is your Maple code, with your name com-
mented at the top. Your Maple code should have a plot of the square
wave, as well as plots of the first four Fourier sum approximations of the
square wave.
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