Math 2270 - Lecture 9: Inverse Matrices

Dylan Zwick

Fall 2012

This lecture covers section 2.5 of the textbook.

1 The Idea of an Inverse

We'll start very simply. In arithmetic, we know $2 \times 5=10$. When 2 operates on 5 by multiplication, the output is 10 . Now, suppose we know the output is 10 , and we want to know the input. That is to say, we want to know what number, when we multiply it by 2 , gives us 10 . The way we do this is we divide 10 by 2 or, equivalently, multiply 10 by $\frac{1}{2}$. The operation of multiplying by $\frac{1}{2}$ is the inverse of the operation of multiplying by 2 , and the product of 2 and $\frac{1}{2}$ is 1 .

There was nothing particularly special about 2 here, and very similar reasoning with very similar results would apply for multiplication by 3, $20, \pi$, or almost any real number we choose. I say almost because there is one very important exception. This exception is 0 . If I tell you that the product of 0 and another number is 0 , you can't tell me what that other number is! More precisely, that number could be any real number. On the other hand, if I tell you that the product of 0 and another number is 1 , you'll have to call me a liar, because there is no number such that when it's multiplied by 0 the product is 1 . So, the number 0 is not invertible!

A similar idea applies to matrices, but matrices are more complicated and more interesting. Suppose A is a square matrix, and $A \mathbf{x}=\mathbf{b}$, where \mathbf{x}, \mathbf{b} are, as usual, vectors. We might be given \mathbf{b} and asked to find \mathbf{x}. If there is another square matrix of the same size as A, call it A^{-1}, such that $A^{-1} A=I$ then we have $\mathbf{x}=A^{-1} A \mathbf{x}=A^{-1} \mathbf{b}$. So, if we know A^{-1} we
can figure out \mathbf{x} from \mathbf{b}. This is the analog in matrix multiplication for the situation described above in standard multiplication. Now, just as not all real numbers are invertible, with 0 being the exception, not all matrices are invertible. The question of which matrices are invertible, and how we can figure out if a given matrix is invertible, is one of the central questions in linear algebra.

Definition - A square matrix A is invertible if there exists a square ma$\operatorname{trix} A^{-1}$ of the same size as A such that

$$
A^{-1} A=I \quad \text { and } \quad A A^{-1}=I
$$

2 Some Properties of Inverse Matrices

We saw a few lectures ago that for a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

an inverse exsits if and only if $a d-b c \neq 0$. The number $a d-b c$ is called the determinant of this matrix, which is a concept about which we'll have much more to say later. The inverse of this matrix will be

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

For example, the matrix

$$
\left(\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right)
$$

has determinant $3 \times 2-5 \times 1=1$, is invertible, and has inverse

$$
\left(\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right)
$$

If A and B are invertible matrices of the same size, then $A+B$ may or may not be invertible.

Example

1. Find invertible matrices A and B such that $A+B$ is not invertible.
2. Find singular matrices A and B such that $A+B$ is invertible.

$$
\text { 1. } \begin{array}{r}
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
A+B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
2 \cdot A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
A+B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

For products of matrices the situation is a little more straightforward. The product $A B$ of two matrices A and B is invertible if and only if A and B are both themselves invertible. If this is the case, then the inverse of $A B$ is

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Note that the order of the inverses (B^{-1} on the left, A^{-1} on the right) is the opposite of the order in the original product (A on the left, B on the right). This pattern generalizes. So

$$
(A B C)^{-1}=C^{-1} B^{-1} A^{-1}
$$

and so on.
Finally, we note that if $B A=I$, then $B=A^{-1}$, and $A B=I$. So, if A has an inverse it is unique, and it is both the left-inverse and the right-inverse. This is important, and not super-quick to prove, and we won't have time to go over the proof in class. The proof is in the textbook, and I encourage you to read over it there.

3 Calculating Inverses Using Elimination

Suppose we're given the matrix

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

and asked to find its inverse. We'll take it on faith for now that it is, in fact, invertible. ${ }^{1}$ To calculate the inverse matrix we use the Gauss-Jordan method.

The Gauss-Jordan method takes our original matrix A and augments it with an identity matrix, producing in our example the 3×6 matrix

$$
\left(\begin{array}{cccccc}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right)
$$

We then perform elimination on the 3×3 matrix on the left, but every elimination step we apply to the entire 3×6 matrix. So, in our example, the first elimination step would be to add $\frac{1}{2}$ of row 1 to row 2 to get rid of the -1 term at the beginning of row 2 . When we do this we get

[^0]\[

\left($$
\begin{array}{cccccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & \frac{1}{2} & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}
$$\right)
\]

The next step in elimination is to use the $\frac{3}{2}$ pivot in the second row to eliminate the -1 term beneath it in the third row. To do this we add $\frac{2}{3}$ times the second row to the third, producing

$$
\left(\begin{array}{cccccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & \frac{1}{2} & 1 & 0 \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right)
$$

At this point standard elimination is over, but the Gauss-Jordan method is not done. The next thing we need to do is use our pivots to eliminate the non-zero terms above those pivots. This is something new. The first step in doing this would be to add $\frac{3}{4}$ row 3 to row 2 , producing

$$
\left(\begin{array}{cccccc}
2 & -1 & 0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 0 & \frac{3}{4} & \frac{3}{2} & \frac{3}{4} \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right)
$$

Finally, we add $\frac{2}{3}$ row 2 to row 1 to give us

$$
\left(\begin{array}{cccccc}
2 & 0 & 0 & \frac{3}{2} & 1 & \frac{1}{2} \\
0 & \frac{3}{2} & 0 & \frac{3}{4} & \frac{3}{2} & \frac{3}{4} \\
0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right)
$$

The 3×6 matrix above is now in something called "row echelon form". Our last step is we multiply each row by a constant so that its pivot becomes 1 . In our example, this means multiplying row 1 by $\frac{1}{2}$, row 2 by $\frac{2}{3}$, and row 3 by $\frac{3}{4}$, producing

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right)
$$

This matrix above is in something called "row reduced echelon form". ${ }^{2}$ Now, let's see what we've done. We started with an augmented matrix with our matrix A on the left side and the identitity matrix I on the right, and we've transformed it into a matrix with the identity matrix I on the left, and what on the right? Well, the matrix on the right is A^{-1} ! So,

$$
A^{-1}=\left(\begin{array}{ccc}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right)
$$

This procedure will work for more than just 3×3 matrices, and will in general work for $n \times n$ matrices. Note that an absolutely critical part of finding this determinant is that all the pivots had to be non-zero. If one of the pivots were zero (and there were no way we could switch rows to get around the problem) then the last step would fail. So, the inverse of a matrix exists if and only if elimination produced n non-zero pivots. The determinant of a matrix is the product of its pivots, and for a matrix to be invertible, it must have non-zero determinant.

[^1]Example - Find the inverse of

$$
\begin{aligned}
& B=\left(\begin{array}{llll}
3 & 2 & 0 & 0 \\
4 & 3 & 0 & 0 \\
0 & 0 & 6 & 5 \\
0 & 0 & 7 & 6
\end{array}\right)
\end{aligned}
$$

$\xrightarrow{\text { Subtract }} \begin{aligned} & \text { Multiply } \\ & 40\end{aligned}$ from row
Multiply,
row by $\frac{1}{3}$
row 2 by 3
row 3 by $\frac{1}{6}$$\quad\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 3 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 & -4 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 6 & -5 \\ 0 & 0 & 0 & 1 & 0 & 0 & -7 & 6\end{array}\right)$

$$
B^{-1}=\left(\begin{array}{cccc}
3 & -2 & 0 & 0 \\
-4 & 3 & 0 & 0 \\
0 & 0 & 6 & -5 \\
0 & 0 & -7 & 6
\end{array}\right)
$$

[^0]: ${ }^{1}$ Finding the inverse is certainly one way to prove it's invertible!

[^1]: ${ }^{2}$ Or sometimes "reduced row echelon form". I've seen it both ways.

