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This lecture covers section 2.3 of the textbook.

1 Elimination Matrices

Let’s examine the following equation
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The matrix on the left is acting on the vector
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from the second entry 2 times the first entry. If we have a different vector
on the left we get a different equation
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but the same action. Again, the action of the matrix is that it subtracts
2 times the first entry from the second entry. We’ll call the matrix on the
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left an elimination matrix, a term which we’ll define precisely a bit later in
this lecture.

Now, let’s take a look at the system of three equations with three un-
knowns we studied at the end of the last section

2x + 4y − 2z = 2

4x + 9y − 3z = 8

−2x − 3y + 7z = 10

We can rewrite this as a matrix equation
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If we left-multiply the coefficient matrix on the left by our elimination
matrix we get
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The action of the elimination matrix on the matrix of coefficients is it
subtracts from the second row 2 times the first row. It’s essentially the
same action that it had on the column vectors.

Let’s go back to the matrix form of our system of linear equations.
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If we left-multiply both sides of this equation by our elimination matrix
we get
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The above equation is the matrix form of the system of linear equations

2x + 4y − 2z = 2

0x + 1y + 1z = 4

−2x − 3y + 7z = 10

The above system of linear equations is the system we get if we start
with our original system, and subtract two times the first equation from
the second. This is the first step in Gaussian elimination! What this means
is that multiplication by an elimination matrix is the matrix version of an
elimination step in Gaussian elimination.

We should probably formally define an elimination matrix before we
get any farther.

Definition - An elimination matrix is a matrix that subtracts a multiple
ℓ of row j from row i. It is the same as the identity matrix except for a
nonzero entry, −ℓ, in the i, j position.
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Example - Find a matrix L that converts the matrix form of the system
of linear equations

2x + 4y − 2z = 2

4x + 9y − 3z = 8

−2x − 3y + 7z = 10

into an upper triangular system.
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2 Permutation Matrices

If we recall our elimination steps, it’s possible that we have to switch or
“permute” two rows. We can do this with matrices as well. For example,
examine the following equation
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The action of the matrix on the left is that it permutes the first and
second entries of the vector. It has the same effect on a matrix
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So, Gaussian elimination can be performed by a series of multiplica-
tions by elimination matrices and permutation matrices. We should prob-
ably formally define a permutation matrix.

Definition - The permutation matrix Pij is the identity matrix with
rows i and j reversed. When it left-multiplies another matrix, it exchanges
rows i and j.
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Example - Convert the following system into of linear equations into
matrix form, and perform Gaussian elimination by a series of matrix mul-
tiplications.

0x + 2y = 4

3x − 2y = 5
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