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This lecture covers section section 8.3 of the textbook.

Today we’re going to talk about a very special set of matrices called
Markov matrices. These are matrices where every entry aij > 0. These
matrices come up all the time in statistics.

The assigned problems for this section are

Section 8.3 - 1, 2, 3, 9, 10

Markov Matrices

A Markov matrix is a type of matrix that comes up in the context of some-
thing called a Markov chain in probability theory. A Markov matrix is a
square matrix with all nonnegative entries, and where the sum of the en-
tries down any column is 1. If the entries are all positive, it’s a positive
Markov matrix.

The most important facts about a positive Markov matrix are:

• λ = 1 is an eigenvalue.

• The eigenvector associated with λ = 1 can be chosen to be strictly
positive.

• All other eigenvalues have magnitude less than 1.
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Before diving into these, let’s take a look at some basic properties of
Markov matrices. Suppose u0 is a positive vector (all components are posi-
tive) whose components add to 1. This is true if and only if

[

1 1 · · · 1
]

u0 =

1. If A is a positive Markov matrix, then the product u1 = Au0 will also
be a positive vector with components adding to 1. This is because if A is a
matrix all of whose columns add to 1, then the product of the matrix with
the row vector

[

1 1 · · · 1
]

will be the row vector consisting of all 1s.
From this we get:

[

1 1 · · · 1
]

Au0 =
[

1 1 · · · 1
]

u0 = 1.

So, we see u1 = Au0 is a positive vector with components adding to 1,
and by induction Aku0 is a positive vector with components adding to 1

for every k.

But, what is this vector? Does is oscillate, or does Aku0 approach some
steady state vector u

∞
. If it does, what is this vector?

It turns out that if the Markov matrix is positive, it approaches a steady
state, and this steady state is given by the eigenvector associated with λ =

1. The reason for this is that we can write u0 as a linear combination of our
eigenvectors:

u0 = c1v1 + c2v2 + · · ·+ cnvn.

The product Au0 will be

Au0 = c1Av1 + c2Av2 + · · ·+ cnAvn = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn

and in general

A
k
u0 = c1λ

k
1
v1 + · · ·+ cnλ

k
nvn.

We know λ1 = 1 and |λi| < 1 for i > 1, and so as k → ∞ the vector
u0 will approach c1v1, which will be the steady state solution. Note this
assumes c1 6= 0.
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So, why is A = 1 an eigenvalue of a Markov matrix? Because every
column of A — I adds to 1 — 1 = 0. So, the rows of A — I add up to the zero
row, and those rows are linearly dependent, so A — I is singular. So, A is
an eigenvalue of A.

The reason no eigenvalue of A has A > 1 is that the powers of A’
would grow. But, every A’ must also be a Markov matrix, and so it can’t
get large.1

That we can find a positive eigenvector for A = 1 follows from the
Perron-Frobenius theorem. An awful and not really correct proof of this
theorem can be found in the textbook.

Example - What is the steady state for the Markov matrix
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‘This is not a formal proof, but it’s the basic idea.
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