Math 2270 - Lecture 40 : Markov Matrices

Dylan Zwick

Fall 2012

This lecture covers section section 8.3 of the textbook.
Today we're going to talk about a very special set of matrices called Markov matrices. These are matrices where every entry $a_{i j}>0$. These matrices come up all the time in statistics.

The assigned problems for this section are
Section 8.3 -1, 2, 3, 9, 10

Markov Matrices

A Markov matrix is a type of matrix that comes up in the context of something called a Markov chain in probability theory. A Markov matrix is a square matrix with all nonnegative entries, and where the sum of the entries down any column is 1 . If the entries are all positive, it's a positive Markov matrix.

The most important facts about a positive Markov matrix are:

- $\lambda=1$ is an eigenvalue.
- The eigenvector associated with $\lambda=1$ can be chosen to be strictly positive.
- All other eigenvalues have magnitude less than 1.

Before diving into these, let's take a look at some basic properties of Markov matrices. Suppose \mathbf{u}_{0} is a positive vector (all components are positive) whose components add to 1 . This is true if and only if $\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right] \mathbf{u}_{0}=$ 1. If A is a positive Markov matrix, then the product $\mathbf{u}_{1}=A \mathbf{u}_{0}$ will also be a positive vector with components adding to 1 . This is because if A is a matrix all of whose columns add to 1 , then the product of the matrix with the row vector $\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$ will be the row vector consisting of all 1 s . From this we get:

$$
\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right] A \mathbf{u}_{0}=\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right] \mathbf{u}_{0}=1
$$

So, we see $\mathbf{u}_{1}=A \mathbf{u}_{0}$ is a positive vector with components adding to 1 , and by induction $A^{k} \mathbf{u}_{0}$ is a positive vector with components adding to 1 for every k.

But, what is this vector? Does is oscillate, or does $A^{k} \mathbf{u}_{0}$ approach some steady state vector \mathbf{u}_{∞}. If it does, what is this vector?

It turns out that if the Markov matrix is positive, it approaches a steady state, and this steady state is given by the eigenvector associated with $\lambda=$ 1. The reason for this is that we can write \mathbf{u}_{0} as a linear combination of our eigenvectors:

$$
\mathbf{u}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

The product $A \mathbf{u}_{0}$ will be

$$
A \mathbf{u}_{0}=c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}+\cdots+c_{n} A \mathbf{v}_{n}=c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+\cdots+c_{n} \lambda_{n} \mathbf{v}_{n}
$$

and in general

$$
A^{k} \mathbf{u}_{0}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+\cdots+c_{n} \lambda_{n}^{k} \mathbf{v}_{n}
$$

We know $\lambda_{1}=1$ and $\left|\lambda_{i}\right|<1$ for $i>1$, and so as $k \rightarrow \infty$ the vector \mathbf{u}_{0} will approach $c_{1} \mathbf{v}_{1}$, which will be the steady state solution. Note this assumes $c_{1} \neq 0$.

So, why is $\lambda=1$ an eigenvalue of a Markov matrix? Because every column of $A-I$ adds to $1-1=0$. So, the rows of $A-I$ add up to the zero row, and those rows are linearly dependent, so $A-I$ is singular. So, λ is an eigenvalue of A.

The reason no eigenvalue of A has $|\lambda|>1$ is that the powers of A^{k} would grow. But, every A^{k} must also be a Markov matrix, and so it can't get large. ${ }^{1}$

That we can find a positive eigenvector for $\lambda=1$ follows from the Perron-Frobenius theorem. An awful and not really correct proof of this theorem can be found in the textbook.

Example - What is the steady state for the Markov matrix

$$
A=\left(\begin{array}{ll}
.80 & .05 \\
.20 & .95
\end{array}\right)
$$

[^0]
[^0]: ${ }^{1}$ This is not a formal proof, but it's the basic idea.

