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This lecture covers section 7.3 of the textbook.

Today, we’re going to look a little deeper into this idea of representing
the same linear transformations in different bases. Diagonalization, and
the singular value decomposition, are really just ways of changing a linear
transformation from the standard basis into the same linear transforma-
tion, but viewed from a basis where the computations are simpler.

We’ll also revisit the four funadmental subspaces, and define some-
thing called the pseudoinverse of a matrix, which takes the place of the in-
verse when the inverse does not exist.

The assigned problems for this section are:

Section 7.3 - 1, 5, 6, 7, 9

Diagonalization and a Change of Basis

A linear transformation is a map, T , from a vector space V to a vector space
U. In general there are many different choices of bases we can make for
V and U, and each of these different bases will give us a different matrix
representation for the linear transformation T . Note that in all of these the
linear transformation T is the same, the only thing that changes is how we
represent it.
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Diagonalizing a matrix is really just finding a basis for which the linear
transformation represented by that matrix is simplest. This basis is the
basis of eigenvectors.

Let’s see this with an example. Suppose we have the linear transfor
mation that projects every vector onto the line y = —x:

\ 2

1
2

2

The eigenvalues for this matrix are ) = 1 and )2 0 with eigenvectors

(1
—1

(1

If we use these vectors as our basis vectors, the linear transformation
becomes

A’=( )

-y

In the standard basis this linear transformation is given by the matrix
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If we have a vector represented in this eigenvector basis, and we want
to represent the vector in the standard basis, the conversion matrix is

M =

(

1 1

−1 1

)

The inverse of this conversion matrix is

M−1
=

(

1

2
−

1

2
1

2

1

2

)

.

We can derive A′ through the relation A′
= M−1AM :

(

1 0

0 0

)

=

(

1

2
−

1

2
1

2

1

2

) (

1

2
−

1

2

−
1

2

1

2

) (

1 1

−1 1

)

.

What’s going on here is that the matrices on the right are converting
the vector to a vector in the standard basis, then taking the linear transfor-
mation, then converting the vector back into the eigenvector basis.

Let’s do one more example. Suppose we have a basis consisting of the
basis vectors

(

2

0

) (

1

1

)

.

We want the matrix A′′ that represents our projection in this basis.
What is it? Well, the matrix for converting from this new basis to the stan-
dard basis is

N =

(

2 1

0 1

)

.

The matrix for converting from the standard basis to this new basis is
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N−1
=

(

1

2
−

1

2

0 1

)

.

So, the linear transformation in the new basis will be:

A′′
=

(

1

2
−

1

2

0 1

) (

1

2
−

1

2

−
1

2

1

2

) (

2 1

0 1

)

=

(

1 0

−1 0

)

.

Note that all these matrices represent the same linear transformation,
just in different bases.

Singular Value Decomposition

So far, we’ve assumed that the input and the output bases are always the
same. This doesn’t have to be the case. In fact, if we have a linear transfor-
mation T : V → U where V and U have different dimensions, it cannot be
the case! We need something more general than diagonalization. We need
the singular value decomposition.

What we’re doing with the singular value decomposition is we’re find-
ing a basis v1, . . . , vn for V, and a basis u1, . . . , um for U, for which the
linear transformation T has a particularly nice form. Specifically, if the lin-
ear transformation T has rank r we choose basis vectors so that if A is the
matrix representing the linear transformation we have the relations

Avj =

{

σjuj j ≤ r

0 j > r

The Pseudoinverse

The singular value decomposition A = UΣV T finds a set of basis vectors
for V and U that allow us to represent the linear transformation A in a
particularly nice way, namely, the matrix Σ.

Now, in general, Σ will look like
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Σ =











σ1

. . .

σr











.

It won’t, in general, be invertible. In fact, it won’t, in general, even be
square. However, we define the pseudoinverse of Σ as

Σ
+

=











σ−1

1

. . .

σ−1
r











.

where if Σ is n × m, Σ
+ is m × n. For example, if

Σ =





2 0 0

0 3 0

0 0 0





then

Σ
+

=





1

2
0 0

0
1

3
0

0 0 0





and

Σ
+
Σ =





1 0 0

0 1 0

0 0 0





which is as close to the identity as we can get with Σ.

We take this pseudoinverse of Σ to define the pseudoinverse of A:
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A = VUT

The pseudoinverse is as close to the inverse as you can get, in the fol
lowing sense. If Ax b, then b is a matrix in the column space of A, and
Ab will be the unique vector q in the row space of A such that Aq b. If
A is invertible, then A = A-’.

Example - Calculate the pseudoinverse of the matrix

A=( )
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