Math 2270 - Lecture 36 : The Idea of a Linear Transformation

Dylan Zwick

Fall 2012

This lecture covers section 7.1 of the textbook.
Today's lecture will be a bit of a break from the relatively high level of difficulty of the last few lectures. Today, we're going to talk about a fundamental idea in mathematics, that of a linear tranformation. Linear transformations are deeply, intimately connected to matrices. In fact, for linear transformations from \mathbb{R}^{n} to \mathbb{R}^{m}, matrices and linear transformations are in bijective correspondence. There's a reason we call it linear algebrea, after all!

The assigned problems for this section are:

Section 7.1 - 1, 3, 4, 10, 16,

1 The Basics

A linear transformation is a function on a vector space that assigns to each input vector \mathbf{v} and output vector $T(\mathbf{v})$, and satisfies the following requirements

- $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$,
- $T(c \mathbf{v})=c T(\mathbf{v})$.

Note that \mathbf{v} and $T(\mathbf{v})$ may be in different vector spaces.
We can combine these two definitions and say a transformation T is linear if it satisfies

$$
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
$$

where c, d are scalars and \mathbf{u}, \mathbf{v} are vectors.
Note that translation $T(\mathbf{v})=\mathbf{v}+\mathbf{u}_{0}$ for a fixed \mathbf{u}_{0} is not a linear transformation if $\mathbf{u}_{0} \neq 0$. This is because

$$
T(\mathbf{v}+\mathbf{w})=\mathbf{v}+\mathbf{w}+\mathbf{u}_{0}
$$

while

$$
T(\mathbf{v})+T(\mathbf{w})=\mathbf{v}+\mathbf{u}_{0}+\mathbf{w}+\mathbf{u}_{0}
$$

Example - Is the transformation $T\left(v_{1}, v_{2}\right)=v_{1} v_{2}$ a linear transformation?

$$
\begin{array}{ll}
\text { No, } & T(1,1)=1 \\
B u t, & T(1,0)+T(0,1)=0+(0,1)=(1,1)
\end{array}
$$

Now, linear transformations take lines to lines, and triangles to friangles. What I mean is that if three points p_{1}, p_{2}, p_{3} are collinear, then $T\left(p_{1}\right), T\left(p_{2}\right), T\left(p_{3}\right)$ are too.

Note that if A is a matrix then the transformation $T(\mathbf{x})=A \mathbf{x}$ is a linear transformation.

Example - Is projection onto the $x y$-plane a linear transformation?

$$
\begin{gathered}
\text { Yes. } T(x, y, z)=(x, y, 0) \\
T\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, 0\right) \\
=T\left(x_{1}, y_{2}, z_{1}\right)+T\left(x_{2}, y_{2}, z_{2}\right) \\
T(c x, c y, c z)=(c x, c y, 0)=c(x, y, 0) \\
=c T(x, y, z) .
\end{gathered}
$$

Example - What about projection onto the plane $z=1$?

$$
\begin{aligned}
& \text { No, For example } \\
& \qquad T(1,1,1)=(1,1,1) \\
& T(2,2,2)=(2,2,1) \neq T(1,1,1)+T(1,1,1) .
\end{aligned}
$$

$$
i
$$

