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This lecture covers section 6.7 of the textbook.

Today, we summit diagonal mountain. That is to say, we’ll learn about
the most general way to “diagonalize” a matrix. This is called the singular
value decomposition. It’s kind of a big deal.

Up to this point in the chapter we’ve dealt exclusively with square ma
trices. Well, today, we’re going to allow rectangular matrices. Is A is an
m x ii matrix with in ii then the eigenvalue equation

Ax=Xx

has issues. In particular, the vector x will have n components, while
the vector Ax will have in components (!) and so the equation above won’t
make sense.

Well... nuts. Now what do we do? We need a square matrix. Well, as
we learned when we were learning about projections, the matrices ATA

and AAT will be square. They will also be symmetric, and in fact positive
semidefinite. A diagonalizer’s dream!

Making use of AAT and ATA, we’ll construct the singular value de
composition of A.

The assigned problems for this section are:

Section 6.7 - 1, 4, 6, 7, 9.
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1 The Singular Value Decomposition

Suppose A is an in x n matrix with rank r. The matrix AAT will be ‘in x m
and have rank r. The matrix ATA will be n x n and also have rank r. Both
matrices ATA and AAT will be positive semidefinite, and will therefore
have r (possibly repeated) positive eigenvalues, and r linearly indepen
dent corresponding eigenvectors. As the matrices are symmetric, these
eigenvectors will be orthogonal, and we can choose them to be orthonor
mal.

We call the eigenvectors of ATA corresponding to its non-zero eigen
values v1, . .. V. These vectors will be in the row space of A. We call the
eigenvectors of AAT corresponding to its non-zero eigenvalues u1, .. . , tin.

These vectors will be in the column space of A.

Now, these vectors have a remarkable relation. Namely,

Av1 = o-1u1,Av2 = U2U2, AVr = JrUr

where Oh,.. cTr are positive numbers called the singular values of the
matrix A.

This relation lets us write

A(vl ...

...

ar)

This gives us a decomposition AV UZ.

Noting that the columns of V are orthonormal we can right multiply
both sides of this equality by VT to get A UVT. This is the singular
value decomposition of A.

If we want to we can make V and U square. We just append orthonor
mal vectors Vr±l, .. . , in the nullspace of A to 17, and orthonormal vec
tors U4,. . . Urn in the left-nulispace of A to 1i. We’ll still get AV = U
and A = U>ZVT.
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This singular value decomposition has a particularly nice representa
tion if we carry through the multiplication of the matrices:

A = UVT = UjiVi +• + UrUr.

Each of these “pieces” has rank 1. If we order the singular values

U1 2 U

then the singular value decomposition gives A in r rank 1 pieces in
order of importance.

We should prove the singular value decomposition before we compute
some examples.

Proof of the Singular Value Decomposition - The matrices ATA and
AAT, as we learned in section 6.5, are positive semidefinite. Therefore, all
non-zero eigenvalues will be positive.

If is a non-zero eigenvalue of ATA with eigenvector v then we can
write ATAvj = o-v, where u = /X is the positive square root of ).

If we left multiply ATAv = uv by v we get

TATA — 2 T
Vi riVj—U,VVj,

and therefore

vTATAv, = (Av)T(Av) = AvH2 = = u.

The last equality uses that v, is normalized. So, this gives us AvjH =

o-i.

Now, as ATAvj = oAv if we left multiply both sides of this equation
by A we get

AATAv, = aAv
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and so Av, is an eigenvector of AAT, with eigenvalue o. So, u =

Av/o- is a unit eigenvector of AAT, and we have

Av =

Done!

2 Finding Singular Value Decompositions

Let’s calculate a few singular value decompositions. First, let’s start with
the rank 2 unsymmetric matrix

A=(2 2)

A is not symmetric, and there will be no orthogonal matrix Q that will
makeQ1AQ diagonal. We need two different orthogonal matrices U and
V.

We find these matrices with the singular value decomposition. So, we
want to compute ATA and its eigenvectors.

ATA=( )
and so

5—A
= (5 A)2 9A2 1OA+16— (A—8)(A—2).

So, ATA has eigenvalues 8 and 2. The corresponding eigenvectors will
be

vi=(2) V2z(Y).
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Now, to find the vectors u1 and u2 we multiply v1 and v2 by A:

2 2
Avi=(1

1)(j \ 01 I—I

22 __L)
Av2=(

1)(
1

So, the unit vectors u1 and u2 will be:

ui=0) u2=1).

The singular values will be 2/ = and This gives us the singu
lar value decomposition:

/ 2 2 /i 0” /2i/ 0
1_i )o i) 0
- 1
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