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This lecture covers section 6.7 of the textbook.

Today, we summit diagonal mountain. That is to say, we’ll learn about
the most general way to “diagonalize” a matrix. This is called the singular
value decomposition. It’s kind of a big deal.

Up to this point in the chapter we’ve dealt exclusively with square ma-
trices. Well, today, we’re going to allow rectangular matrices. Is A is an
m × n matrix with m 6= n then the eigenvalue equation

Ax = λx

has issues. In particular, the vector x will have n components, while
the vector Ax will have m components (!) and so the equation above won’t
make sense.

Well... nuts. Now what do we do? We need a square matrix. Well, as
we learned when we were learning about projections, the matrices AT A
and AAT will be square. They will also be symmetric, and in fact positive
semidefinite. A diagonalizer’s dream!

Making use of AAT and AT A, we’ll construct the singular value de-
composition of A.

The assigned problems for this section are:

Section 6.7 - 1, 4, 6, 7, 9.
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1 The Singular Value Decomposition

Suppose A is an m × n matrix with rank r. The matrix AAT will be m × m
and have rank r. The matrix AT A will be n × n and also have rank r. Both
matrices AT A and AAT will be positive semidefinite, and will therefore
have r (possibly repeated) positive eigenvalues, and r linearly indepen-
dent corresponding eigenvectors. As the matrices are symmetric, these
eigenvectors will be orthogonal, and we can choose them to be orthonor-
mal.

We call the eigenvectors of AT A corresponding to its non-zero eigen-
values v1, . . . , vr. These vectors will be in the row space of A. We call the
eigenvectors of AAT corresponding to its non-zero eigenvalues u1, . . . , ur.
These vectors will be in the column space of A.

Now, these vectors have a remarkable relation. Namely,

Av1 = σ1u1, Av2 = σ2u2, . . . , Avr = σrur

where σ1, . . . , σr are positive numbers called the singular values of the
matrix A.

This relation lets us write

A



 v1 · · · vr



 =



 u1 · · · ur











σ1

. . .

σr






.

This gives us a decomposition AV = UΣ.

Noting that the columns of V are orthonormal we can right multiply
both sides of this equality by V T to get A = UΣV T . This is the singular
value decomposition of A.

If we want to we can make V and U square. We just append orthonor-
mal vectors vr+1, . . . , vn in the nullspace of A to V , and orthonormal vec-
tors ur+1, . . . , um in the left-nullspace of A to M . We’ll still get AV = UΣ
and A = UΣV T .
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This singular value decomposition has a particularly nice representa-
tion if we carry through the multiplication of the matrices:

A = UΣV T = u1σ1v1 + · · ·+ urσrvT

r
.

Each of these “pieces” has rank 1. If we order the singular values

σ1 ≥ σ2 ≥ · · · ≥ σr

then the singular value decomposition gives A in r rank 1 pieces in
order of importance.

We should prove the singular value decomposition before we compute
some examples.

Proof of the Singular Value Decomposition - The matrices AT A and
AAT , as we learned in section 6.5, are positive semidefinite. Therefore, all
non-zero eigenvalues will be positive.

If λi is a non-zero eigenvalue of AT A with eigenvector vi then we can
write AT Avi = σ2

i
vi, where σi =

√
λi is the positive square root of λi.

If we left multiply AT Avi = σ2
i
vi by vT

i
we get

vT

i
AT Avi = σ2

i
vT

i
vi,

and therefore

vT

i
AT Avi = (Avi)

T (Avi) = ||Avi||2 = σ2

i
vT

i
vi = σ2

i
.

The last equality uses that vi is normalized. So, this gives us ||Avi|| =
σi.

Now, as AT Avi = σ2
i
Avi if we left multiply both sides of this equation

by A we get

AAT Avi = σ2

i
Avi
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and so Avi is an eigenvector of AAT , with eigenvalue σ2
i
. So, ui =

Avi/σi is a unit eigenvector of AAT , and we have

Avi = σiui.

Done!

2 Finding Singular Value Decompositions

Let’s calculate a few singular value decompositions. First, let’s start with
the rank 2 unsymmetric matrix

A =

(

2 2
−1 1

)

.

A is not symmetric, and there will be no orthogonal matrix Q that will
make Q−1AQ diagonal. We need two different orthogonal matrices U and
V .

We find these matrices with the singular value decomposition. So, we
want to compute AT A and its eigenvectors.

AT A =

(

5 3
3 5

)

and so

∣

∣

∣

∣

5 − λ 3
3 5 − λ

∣

∣

∣

∣

= (5 − λ)2 − 9 = λ2 − 10λ + 16 = (λ − 8)(λ − 2).

So, AT A has eigenvalues 8 and 2. The corresponding eigenvectors will
be

v1 =

(

1
√

2
1
√

2

)

v2 =

(

− 1
√

2
1
√

2

)

.
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Now, to find the vectors u1 and u2 we multiply v1 and v2 by A:

Av1 =

(

2 2
−1 1

)

(

1
√

2
1
√

2

)

=

(

2
√

2
0

)

,

Av2 =

(

2 2
−1 1

)

(

− 1
√

2
1
√

2

)

=

(

0√
2

)

.

So, the unit vectors u1 and u2 will be:

u1 =

(

1
0

)

u2 =

(

0
1

)

.

The singular values will be 2
√

2 =
√

8 and
√

2. This gives us the singu-
lar value decomposition:

(

2 2
−1 1

)

=

(

1 0
0 1

)(

2
√

2 0

0
√

2

)

(

1
√

2

1
√

2

− 1
√

2

1
√

2

)

.
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Example - Find the SVD of the matrix

A =

(

2 2
1 1

)

.
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