Math 2270 - Lecture 35 : Singular Value Decomposition (SVD)

Dylan Zwick

Fall 2012

This lecture covers section 6.7 of the textbook.

Today, we summit diagonal mountain. That is to say, we'll learn about the most general way to "diagonalize" a matrix. This is called the *singular value decomposition*. It's kind of a big deal.

Up to this point in the chapter we've dealt exclusively with square matrices. Well, today, we're going to allow rectangular matrices. Is A is an $m \times n$ matrix with $m \neq n$ then the eigenvalue equation

 $A\mathbf{x} = \lambda \mathbf{x}$

has issues. In particular, the vector \mathbf{x} will have n components, while the vector $A\mathbf{x}$ will have m components (!) and so the equation above won't make sense.

Well... nuts. Now what do we do? We need a square matrix. Well, as we learned when we were learning about projections, the matrices $A^T A$ and AA^T will be square. They will also be symmetric, and in fact positive semidefinite. A diagonalizer's dream!

Making use of AA^T and A^TA , we'll construct the singular value decomposition of A.

The assigned problems for this section are:

1 The Singular Value Decomposition

Suppose *A* is an $m \times n$ matrix with rank *r*. The matrix AA^T will be $m \times m$ and have rank *r*. The matrix A^TA will be $n \times n$ and also have rank *r*. Both matrices A^TA and AA^T will be positive semidefinite, and will therefore have *r* (possibly repeated) positive eigenvalues, and *r* linearly independent corresponding eigenvectors. As the matrices are symmetric, these eigenvectors will be orthogonal, and we can choose them to be orthonormal.

We call the eigenvectors of $A^T A$ corresponding to its non-zero eigenvalues $\mathbf{v}_1, \ldots, \mathbf{v}_r$. These vectors will be in the row space of A. We call the eigenvectors of AA^T corresponding to its non-zero eigenvalues $\mathbf{u}_1, \ldots, \mathbf{u}_r$. These vectors will be in the column space of A.

Now, these vectors have a remarkable relation. Namely,

$$A\mathbf{v}_1 = \sigma_1\mathbf{u}_1, A\mathbf{v}_2 = \sigma_2\mathbf{u}_2, \dots, A\mathbf{v}_r = \sigma_r\mathbf{u}_r$$

where $\sigma_1, \ldots, \sigma_r$ are positive numbers called the *singular values* of the matrix *A*.

This relation lets us write

$$A\left(\begin{array}{ccc}\mathbf{v}_1&\cdots&\mathbf{v}_r\end{array}\right)=\left(\begin{array}{ccc}\mathbf{u}_1&\cdots&\mathbf{u}_r\end{array}\right)\left(\begin{array}{ccc}\sigma_1&\\&\ddots\\&&\sigma_r\end{array}\right).$$

This gives us a decomposition $AV = U\Sigma$.

Noting that the columns of V are orthonormal we can right multiply both sides of this equality by V^T to get $A = U\Sigma V^T$. This is the singular value decomposition of A.

If we want to we can make *V* and *U* square. We just append orthonormal vectors $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ in the nullspace of *A* to *V*, and orthonormal vectors $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_m$ in the left-nullspace of *A* to *M*. We'll still get $AV = U\Sigma$ and $A = U\Sigma V^T$.

This singular value decomposition has a particularly nice representation if we carry through the multiplication of the matrices:

$$A = U\Sigma V^T = \mathbf{u}_1 \sigma_1 \mathbf{v}_1 + \dots + \mathbf{u}_r \sigma_r \mathbf{v}_r^T.$$

Each of these "pieces" has rank 1. If we order the singular values

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$$

then the singular value decomposition gives A in r rank 1 pieces in order of importance.

We should prove the singular value decomposition before we compute some examples.

Proof of the Singular Value Decomposition - The matrices $A^T A$ and AA^T , as we learned in section 6.5, are positive semidefinite. Therefore, all non-zero eigenvalues will be positive.

If λ_i is a non-zero eigenvalue of $A^T A$ with eigenvector \mathbf{v}_i then we can write $A^T A \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i$, where $\sigma_i = \sqrt{\lambda_i}$ is the positive square root of λ_i .

If we left multiply $A^T A \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i$ by \mathbf{v}_i^T we get

$$\mathbf{v}_i^T A^T A \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i^T \mathbf{v}_i,$$

and therefore

$$\mathbf{v}_i^T A^T A \mathbf{v}_i = (A \mathbf{v}_i)^T (A \mathbf{v}_i) = ||A \mathbf{v}_i||^2 = \sigma_i^2 \mathbf{v}_i^T \mathbf{v}_i = \sigma_i^2.$$

The last equality uses that \mathbf{v}_i is normalized. So, this gives us $||A\mathbf{v}_i|| = \sigma_i$.

Now, as $A^T A \mathbf{v}_i = \sigma_i^2 A \mathbf{v}_i$ if we left multiply both sides of this equation by *A* we get

$$AA^T A \mathbf{v}_i = \sigma_i^2 A \mathbf{v}_i$$

and so $A\mathbf{v}_i$ is an eigenvector of AA^T , with eigenvalue σ_i^2 . So, $\mathbf{u}_i = A\mathbf{v}_i/\sigma_i$ is a unit eigenvector of AA^T , and we have

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i.$$

Done!

2 Finding Singular Value Decompositions

Let's calculate a few singular value decompositions. First, let's start with the rank 2 unsymmetric matrix

$$A = \left(\begin{array}{cc} 2 & 2\\ -1 & 1 \end{array}\right).$$

A is not symmetric, and there will be no orthogonal matrix Q that will make $Q^{-1}AQ$ diagonal. We need two different orthogonal matrices U and V.

We find these matrices with the singular value decomposition. So, we want to compute $A^T A$ and its eigenvectors.

$$A^T A = \left(\begin{array}{cc} 5 & 3\\ 3 & 5 \end{array}\right)$$

and so

$$\begin{vmatrix} 5-\lambda & 3\\ 3 & 5-\lambda \end{vmatrix} = (5-\lambda)^2 - 9 = \lambda^2 - 10\lambda + 16 = (\lambda - 8)(\lambda - 2).$$

So, $A^T A$ has eigenvalues 8 and 2. The corresponding eigenvectors will be

$$\mathbf{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \qquad \qquad \mathbf{v}_2 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Now, to find the vectors \mathbf{u}_1 and \mathbf{u}_2 we multiply \mathbf{v}_1 and \mathbf{v}_2 by A:

$$A\mathbf{v}_{1} = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 2\sqrt{2} \\ 0 \end{pmatrix},$$
$$A\mathbf{v}_{2} = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix}.$$

So, the unit vectors \mathbf{u}_1 and \mathbf{u}_2 will be:

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The singular values will be $2\sqrt{2} = \sqrt{8}$ and $\sqrt{2}$. This gives us the singular value decomposition:

$$\left(\begin{array}{cc} 2 & 2\\ -1 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 2\sqrt{2} & 0\\ 0 & \sqrt{2} \end{array}\right) \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right).$$

Example - Find the SVD of the matrix

$$A = \left(\begin{array}{cc} 2 & 2\\ 1 & 1 \end{array}\right).$$