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This lecture covers section 6.4 of the textbook.

Today we’re going to look at diagonalizing a matrix when the matrix is
symmetric. It turns out that symmetric matrices have a number of totally
awesome properties:

1. The eigenvalues of a symmetric matrix are all real.

2. The eigenvectors of a symmetrix matrix are all orthogonal, and hence
can be chosen orthonormal.

Today we’ll prove these properties, and a few more, and learn yet an-
other factorization, this one being A = QΛQT , combining diagonalization
with orthogonal matrices.

The assigned problems for this section are:

Section 6.4 - 1, 3, 5, 14, 23

1 Eigenvectors and Eigenvalues of Symmetric Ma-

trices

We’ll begin by proving that all the eigenvalues of a symmetric matrix are
real. First, recall that the complex conjugate of an imaginary number
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z = x + iy

is the number you get by switching the sign of the imaginary term, and
is usually denoted with a line over the variable

z = x − iy.

Now, the complex conjugate of a product is the product of the conju-
gate xy = xy, and so if we take the eigenvalue equation for a real, sym-
metric matrix A we get

Ax = λx

and conjugate both sides we get

Ax = λx.

Note that A = A, as A is real.

If we take the transpose of the conjugate equation we get (remembering
that A is symmetric, so A = AT )

xT A = xT λ.

If we right multiply the above equation by x we get

xT Ax = xλx.

If we left multiply our original eigenvalue equation by xT we get

xT Ax = xT λx.

We note that both of these are equalities for xT Ax, and therefore we
must have the equality
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xT λx = xT λx

So, we must have λ = λ. Thus, λ must be real.

Now we prove that all the eigenvectors are orthogonal. We first prove
that if the eigenvalues are different, the eigenvectors must be orthogonal.

Suppose Ax = λ1x and Ay = λ2y. From these we get

(λ1x)T y = (Ax)T y = xAT y = xT Ay = xT λ2y.

The only way this is true is if λ1 = λ2 or xT y = 0. So, if the eigenvalues
are distinct, the eigenvectors are orthogonal.

We have now proven that if all the eigenvalues of a matrix are distinct,
then all the eigenvectors are perpendicular. We can scale the eigenvectors
so that they all have length 1, and are therefore orthonormal.

So, if A is symmetric, we can diagonalize it as

A = QΛQT =



 x1 · · · xn
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Note this can be rewritten as

A = λ1x1xT

1
+ · · · + λnxT

n
xn

where the xix
T

i
terms are the projection matrices onto the linear spaces

spanned by the respective xi. These are called the eigenspaces.

The book proves at the end of the section that this is true for any sym-
metric matrix, regardless of whether the eigenvalues are repeated or not.
So, if A is a symmetric matrix, then A is diagonalizable, and can be written
as

A = QΛQ−1 = QΛQT .
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This is known as the spectral theorem. Note that, as we mentioned in the
last lecture, not all matrices are diagonalizable. But, all symmetric matrices
are.

Example - Find the spectral decomposition A = QAQT of the matrix

A=(2 6)

-

/0

- 5j-5

(_1 1ix1 / jN
) y( ()

(3 )(Y()
) D ()IL LJ

/ 1 Z0

7/ _5)1
\

I

(2+5)

(0

-/0)

4

LW

4



2 Complex Eigenvalues of Real Matrices

If a real matrix is symmetric then all its eigenvalues are real. However, if
a real matrix is not symmetric, it’s quite possible that there are complex
eigenvalues or even complex eigenvectors. However, these eigenvalues
and eigenvectors will come in “conjugate pairs”

Ax = λx Ax = λx

So, each complex eigenvalue has a conjugate twin.
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