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This lecture covers section 6.4 of the textbook.

Today we’re going to look at diagonalizing a matrix when the matrix is
symmetric. It turns out that symmetric matrices have a number of totally
awesome properties:

1. The eigenvalues of a symmetric matrix are all real.

2. The eigenvectors of a symmetrix matrix are all orthogonal, and hence

can be chosen orthonormal.

Today we’ll prove these properties, and a few more, and learn yet an-
other factorization, this one being A = QAQ”, combining diagonalization
with orthogonal matrices.

The assigned problems for this section are:

Section 6.4-1,3,5,14,23

1 Eigenvectors and Eigenvalues of Symmetric Ma-
trices

We'll begin by proving that all the eigenvalues of a symmetric matrix are
real. First, recall that the complex conjugate of an imaginary number



z=x4+1y

is the number you get by switching the sign of the imaginary term, and
is usually denoted with a line over the variable

Z=T—1y.

Now, the complex conjugate of a product is the product of the conju-
gate 7y = 7y, and so if we take the eigenvalue equation for a real, sym-
metric matrix A we get

Ax = Ax
and conjugate both sides we get
AX = )X.

Note that A = A, as A is real.

If we take the transpose of the conjugate equation we get (remembering
that A is symmetric, so A = A7)

xX"A=x"\.
If we right multiply the above equation by x we get
X" Ax = X)\X.
If we left multiply our original eigenvalue equation by x* we get
x" Ax = X" \x.

We note that both of these are equalities for x” Ax, and therefore we
must have the equality



XA = XE X

So, we must have A = \. Thus, A must be real.

Now we prove that all the eigenvectors are orthogonal. We first prove
that if the eigenvalues are different, the eigenvectors must be orthogonal.

Suppose Ax = A\;x and Ay = \;y. From these we get
M)y = (Ax)Ty = xATy = xT Ay = x" \yy.

The only way this is true is if \; = Ay or x”y = 0. So, if the eigenvalues
are distinct, the eigenvectors are orthogonal.

We have now proven that if all the eigenvalues of a matrix are distinct,
then all the eigenvectors are perpendicular. We can scale the eigenvectors
so that they all have length 1, and are therefore orthonormal.

So, if A is symmetric, we can diagonalize it as

)\1 X1
A=QAQT = | xi - x,

Note this can be rewritten as
A= )\1X1X{ 4+ 4 )\nx;fxn

where the x;x] terms are the projection matrices onto the linear spaces
spanned by the respective x;. These are called the eigenspaces.

The book proves at the end of the section that this is true for any sym-
metric matrix, regardless of whether the eigenvalues are repeated or not.
So, if A is a symmetric matrix, then A is diagonalizable, and can be written
as

A=QAQ " = QAQ".
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This is known as the spectral theorem. Note that, as we mentioned in the
last lecture, not all matrices are diagonalizable. But, all symmetric matrices
are.

Example - Find the spectral decomposition A = QAQ” of the matrix

a=(%7)



2 Complex Eigenvalues of Real Matrices

If a real matrix is symmetric then all its eigenvalues are real. However, if
a real matrix is not symmetric, it’s quite possible that there are complex
eigenvalues or even complex eigenvectors. However, these eigenvalues
and eigenvectors will come in “conjugate pairs”

Ax = \x AX = \X

So, each complex eigenvalue has a conjugate twin.



