Math 2270 - Lecture 32 : Symmetric Matrices

Dylan Zwick

Fall 2012

This lecture covers section 6.4 of the textbook.
Today we're going to look at diagonalizing a matrix when the matrix is symmetric. It turns out that symmetric matrices have a number of totally awesome properties:

1. The eigenvalues of a symmetric matrix are all real.
2. The eigenvectors of a symmetrix matrix are all orthogonal, and hence can be chosen orthonormal.

Today we'll prove these properties, and a few more, and learn yet another factorization, this one being $A=Q \Lambda Q^{T}$, combining diagonalization with orthogonal matrices.

The assigned problems for this section are:
Section 6.4-1, 3, 5, 14, 23

1 Eigenvectors and Eigenvalues of Symmetric Matrices

We'll begin by proving that all the eigenvalues of a symmetric matrix are real. First, recall that the complex conjugate of an imaginary number

$$
z=x+i y
$$

is the number you get by switching the sign of the imaginary term, and is usually denoted with a line over the variable

$$
\bar{z}=x-i y
$$

Now, the complex conjugate of a product is the product of the conjugate $\overline{x y}=\overline{x y}$, and so if we take the eigenvalue equation for a real, symmetric matrix A we get

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

and conjugate both sides we get

$$
A \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}
$$

Note that $\bar{A}=A$, as A is real.
If we take the transpose of the conjugate equation we get (remembering that A is symmetric, so $A=A^{T}$)

$$
\overline{\mathbf{x}}^{T} A=\overline{\mathbf{x}}^{T} \bar{\lambda}
$$

If we right multiply the above equation by \mathbf{x} we get

$$
\overline{\mathbf{x}}^{T} A \mathbf{x}=\overline{\mathbf{x}} \bar{\lambda} \mathbf{x}
$$

If we left multiply our original eigenvalue equation by $\overline{\mathbf{x}}^{T}$ we get

$$
\overline{\mathbf{x}}^{T} A \mathbf{x}=\overline{\mathbf{x}}^{T} \lambda \mathbf{x}
$$

We note that both of these are equalities for $\overline{\mathbf{x}}^{T} A \mathbf{x}$, and therefore we must have the equality

$$
\overline{\mathbf{x}}^{T} \lambda \mathbf{x}=\overline{\mathbf{x}}^{T} \bar{\lambda} \mathbf{x}
$$

So, we must have $\lambda=\bar{\lambda}$. Thus, λ must be real.
Now we prove that all the eigenvectors are orthogonal. We first prove that if the eigenvalues are different, the eigenvectors must be orthogonal.

Suppose $A \mathbf{x}=\lambda_{1} \mathbf{x}$ and $A \mathbf{y}=\lambda_{2} \mathbf{y}$. From these we get

$$
\left(\lambda_{1} \mathbf{x}\right)^{T} \mathbf{y}=(A \mathbf{x})^{T} \mathbf{y}=\mathbf{x} A^{T} \mathbf{y}=\mathbf{x}^{T} A \mathbf{y}=\mathbf{x}^{T} \lambda_{2} \mathbf{y}
$$

The only way this is true is if $\lambda_{1}=\lambda_{2}$ or $\mathbf{x}^{T} \mathbf{y}=0$. So, if the eigenvalues are distinct, the eigenvectors are orthogonal.

We have now proven that if all the eigenvalues of a matrix are distinct, then all the eigenvectors are perpendicular. We can scale the eigenvectors so that they all have length 1 , and are therefore orthonormal.

So, if A is symmetric, we can diagonalize it as

$$
A=Q \Lambda Q^{T}=\left(\begin{array}{lll}
& & \\
\mathbf{x}_{1} & \cdots & \mathbf{x}_{n}
\end{array}\right)\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)\left(\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{n}^{T}
\end{array}\right)
$$

Note this can be rewritten as

$$
A=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{T}+\cdots+\lambda_{n} \mathbf{x}_{n}^{T} \mathbf{x}_{n}
$$

where the $\mathbf{x}_{i} \mathbf{x}_{i}^{T}$ terms are the projection matrices onto the linear spaces spanned by the respective \mathbf{x}_{i}. These are called the eigenspaces.

The book proves at the end of the section that this is true for any symmetric matrix, regardless of whether the eigenvalues are repeated or not. So, if A is a symmetric matrix, then A is diagonalizable, and can be written as

$$
A=Q \Lambda Q^{-1}=Q \Lambda Q^{T}
$$

This is known as the spectral theorem. Note that, as we mentioned in the last lecture, not all matrices are diagonalizable. But, all symmetric matrices are.

Example - Find the spectral decomposition $A=Q \Lambda Q^{T}$ of the matrix

$$
A=\left(\begin{array}{cc}
-2 & 6 \\
6 & 7
\end{array}\right)
$$

2 Complex Eigenvalues of Real Matrices

If a real matrix is symmetric then all its eigenvalues are real. However, if a real matrix is not symmetric, it's quite possible that there are complex eigenvalues or even complex eigenvectors. However, these eigenvalues and eigenvectors will come in "conjugate pairs"

$$
A \mathbf{x}=\lambda \mathbf{x} \quad A \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}}
$$

So, each complex eigenvalue has a conjugate twin.

