
Math 2270 - Lecture 31 : Diagonalizing a
Matrix

Dylan Zwick

Fall 2012

This lecture covers section 6.2 of the textbook.

Today we’re going to talk about diagonalizing a matrix. What we mean
by this is that we want to express the matrix as a product of three matrices
in the form:

A = SΛS−1

where Λ is a diagonal matrix. In particular, the diagonal entries of
Λ will be the eigenvalues of A, and the columns of S will be the corre-
sponding eigenvectors. Having A in this form can greatly simplify many
calculations, particularly calculations involving powers of A.

The assigned problems for this section are:

Section 6.2 - 1, 2, 15, 16, 26

1 The Basic Formula

Suppose the matrix A has n distinct eigenvalues. In this case there will be
n corresponding linearly independent eigenvectors.1 Call these eigenvec-
tors x1, . . . , xn. The matrix S is formed by making these eigenvectors its
columns:

1This is proven in the textbook. We’ll take it as given.
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S =



 x1 · · · xn





Now, the product AS will be:

A



 x1 · · · xn



 =



 λ1x1 · · · λnxn



.

If we define Λ to be the diagonal matrix with diagonal entries equal to
the eigenvalues of A, then we also have

SΛ =



 x1 · · · xn











λ1

. . .

λn






=



 λ1x1 · · · λnxn



.

These two matrices are equal and so we get

AS = SΛ.

Now, all the eigenvectors of A are linearly independent, and so the
matrix S has full rank, which means it’s invertible. Therefore, we have

A = SΛS−1.

This form, SΛS−1 is called diagonalizing the matrix A.
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2 Diagonalization, Matrix Powers, and Fibonacci

Now, one of the most useful things about the diagonalization of a matrix
is that it can make it much, much easier to take powers of the matrix. This
is because

Ak = (SΛS−1)(SΛS−1) · · · (SΛS−1) = SΛkS−1.

The middle term, Λk, is the power of a diagonal matrix, which is com-
paratively very easy to calculate.







λ1

. . .

λn







k

=







λk

1

. . .

λk

n






.

We’ll demonstrate this with an extended example about computing Fi-
bonacci numbers.

The Fibonacci numbers are a very old sequence of numbers defined
recursively by the formula

Fk+2 = Fk+1 + Fk,

with a seed of F0 = 0, F1 = 1.2 From here we can get F2 = 1, F3 =
2, F4 = 3, F5 = 5, . . .. Now, what we’d like to do is find a closed-form
formula for calculating a number Fk in this sequence. That way, in order
to find Fk, we wouldn’t first need to calculate all the Fibonacci numbers
up to Fk−1. We can derive such a formula using eigenvalues, eigenvectors,
and diagonalization.

We note that if we define a vector whose components are two consec-

utive terms of the Fibonacci sequence, uk =

(

Fk+1

Fk

)

, then the action of

the matrix A =

(

1 1
1 0

)

on the vector uk produces the vector uk+1.

2You may remember the Fibonacci numbers from “The Da Vinci Code”, if from
nowhere else.
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Now, our initial “seed” vector will be

11
U0 =

If we take the eigenvalues and eigenvectors we calculated for A in the
example above3we can express u0 as

30K, so if you’re reading these lecture notes before hand, you might be able to figure
out the answer to the example problem without actually having to do it. So sue me.

40r 19, depending on if you start your counting at 0 or 1.

X1 — X2

= — A2

The successive vectors in the sequence will be:

k (A1)’x1 —

UkAUO .
ki —

In this formula we use the fact that A’x1 = ,\x1 and Akx2 =

Example - Calculate F18, the 18th4 Fibonacci number.

F L5
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3 Not All Matrices Are Diagonalizable

We’ve assumed up to this point that all eigenvalues are distinct. If this
is the case then there will be n corresponding eigenvectors, and they will
all be linearly independent. This is proven in the textbook. The proof is
pretty straightforward, but I’m going to skip it here and ask you to read
the textbook if you’re interested in it. The important thing for us is the
result.

Now, of course, it’s not always the case that all the eigenvalues of a
matrix are distinct, and in these cases it will not always be true that we
can find n linearly independent eigenvectors. If we can’t find n linearly
independent eigenvectors, then we can’t diagonalize the matrix. So, not
all matrices are diagonalizable.

For example, the matrix

(

0 1
0 0

)

has characteristic equation λ2 = 0, and therefore has only one eigen-
value, λ = 0, or order 2. The only eigenvectors are the non-zero constant
multiples of

(

1
0

)

.

We cannot form our matrix S from just this one eigenvector, and there-
fore we cannot diagonalize A. So, whenever a matrix A has distinct eigen-
values it will be diagonalizable, but if it has repreated eigenvalues it might
not be.
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