Math 2270 - Lecture 2: Lengths and Dot Products

Dylan Zwick

Fall 2012

1 The Dot Product

Last time we learned how to add vectors together (the result is another vector), how to multiply a vector by a scalar (again, we get a vector), and how to combine these two operations to form linear combinations.

There's no obvious geometric way of multiplying vectors (I mean, what is 10 mph North times 5 mph West...), but we do have a notion of an "inner product" or "dot product" of two vectors.

Definition The *dot product* or *inner product* of two vectors (u_1, u_2) and (v_1, v_2) is the number:

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2.$$

For two *n*-dimensional vectors, the above definition generalizes as:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i.$$

Note that the order of the dot product doesn't matter. So, $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.

Example - Calculate the dot product $\mathbf{u} \cdot \mathbf{v}$ for the vectors

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}.$$

|x2+2x3+3x0 = 8

2 Lengths and Unit Vectors

If we take the dot product of a nonzero vector with itself, we get a number that is always positive.

Example - What is the dot product $\mathbf{v} \cdot \mathbf{v}$ where $\mathbf{v} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$?

$$1^{2} + 3^{2} + 2^{2} = [14]$$

We define the *length* of a vector to be the square root of the dot product of that vector with itself.

Example - What is the length of the vector **v** from the example above?

$$\sqrt{\overline{v}} \cdot \overline{\overline{v}} = \sqrt{14}$$

The length of a vector **v** is usually written $||\mathbf{v}||$. So, $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Now, this definition makes geometric sense. Suppose, for example, we have the vector $\begin{pmatrix} 3 & 4 \end{pmatrix}$. If we draw this vector in the *xy*-plane, with its tip at the origin, we can apply the Pythagorean theorem to see that its length is 5.

In general, for a vector with components $\begin{pmatrix} x & y \end{pmatrix}$ the Pythagorean theorem tells us its length is $\sqrt{x^2 + y^2}$, and our definition of length in terms of the dot product is just a generalization of this idea.

A unit vector is a vector of length 1. Some unit vectors are

$$\left(\begin{array}{c}1\\0\end{array}\right), \left(\begin{array}{c}0\\1\end{array}\right), \left(\begin{array}{c}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{array}\right).$$

If we have a vector \mathbf{v} , a unit vector in the same direction as \mathbf{v} is usually written $\hat{\mathbf{v}}$, and is defined as:

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{||\mathbf{v}||}.$$

Example What are the components of a unit vector in the same direction

as the vector $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$?

$$||\vec{\nabla}|| = \sqrt{|\vec{Y}|} = \left(\begin{array}{c} 1 \\ \sqrt{|\vec{Y}|} \\ \frac{2}{\sqrt{|\vec{Y}|}} \\ \frac{2}{\sqrt{|\vec{Y}|}} \end{array} \right)$$

3 The Angle Between Two Vectors

The vectors $\begin{pmatrix} 4 & 2 \end{pmatrix}$ and $\begin{pmatrix} -1 & 2 \end{pmatrix}$ have dot product -4 + 4 = 0. If we draw these two vectors, we see they're perpendicular.

This isn't a coincidence. Two vectors are perpendicular if and only if their dot product is 0.

In general, the dot product can be used to measure the angle between any two vectors. If θ is the angle between vectors **u** and **v**, then the dot product of **u** and **v** is related to the angle between them by the formula:

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos\theta.$$

If the dot product is negative, then $\theta > 90^\circ$, while if the dot product is positive, then $\theta < 90^\circ$. If the dot product is 0, then $\theta = 90^\circ$ on the nose.

Example - Find the angle θ between the vectors

$$\mathbf{u} = \begin{pmatrix} 2\\2\\-1 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 2\\-1\\2 \end{pmatrix}.$$

$$\vec{u} \cdot \vec{v} = 0 \implies \cos \Theta = 0 \implies \Theta = 0 = 0$$

We can use our angle relation to derive two of the most famous inequalities in mathematics.

Schwarz Inequality $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}||$. Triangle Inequality $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$. *Example* - Derive the triangle inequality.

I leave the Schwarz inequality as an exercise for you to do on your own. Try it!