Math 2270 - Lecture 2: Lengths and Dot Products

Dylan Zwick

Fall 2012

1 The Dot Product

Last time we learned how to add vectors together (the result is another vector), how to multiply a vector by a scalar (again, we get a vector), and how to combine these two operations to form linear combinations.

There's no obvious geometric way of multiplying vectors (I mean, what is 10 mph North times 5 mph West...), but we do have a notion of an "inner product" or "dot product" of two vectors.

Definition The dot product or inner product of two vectors $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ is the number:

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}
$$

For two n-dimensional vectors, the above definition generalizes as:

$$
\mathbf{u} \cdot \mathbf{v}=\sum_{i=1}^{n} u_{i} v_{i}
$$

Note that the order of the dot product doesn't matter. So, $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.

Example - Calculate the dot product $\mathbf{u} \cdot \mathbf{v}$ for the vectors

$$
\begin{array}{r}
\mathbf{u}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \mathbf{v}=\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right) . \\
1 \times 2+2 \times 3+3 \times 0=8
\end{array}
$$

2 Lengths and Unit Vectors

If we take the dot product of a nonzero vector with itself, we get a number that is always positive.

Example - What is the dot product $\mathbf{v} \cdot \mathbf{v}$ where $\mathbf{v}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$?

$$
1^{2}+3^{2}+2^{2}=14
$$

We define the length of a vector to be the square root of the dot product of that vector with itself.

Example - What is the length of the vector \mathbf{v} from the example above?

$$
\sqrt{\vec{v}-\vec{v}}=\sqrt{14}
$$

The length of a vector \mathbf{v} is usually written $\|\mathbf{v}\|$. So, $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$.
Now, this definition makes geometric sense. Suppose, for example, we have the vector ($\left.\begin{array}{ll}3 & 4\end{array}\right)$. If we draw this vector in the $x y$-plane, with its tip at the origin, we can apply the Pythagorean theorem to see that its length is 5 .

In general, for a vector with components $\left(\begin{array}{ll}x & y\end{array}\right)$ the Pythagorean theorem tells us its length is $\sqrt{x^{2}+y^{2}}$, and our definition of length in terms of the dot product is just a generalization of this idea.

A unit vector is a vector of length 1 . Some unit vectors are

$$
\binom{1}{0},\binom{0}{1},\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} .
$$

If we have a vector \mathbf{v}, a unit vector in the same direction as \mathbf{v} is usually written $\hat{\mathbf{v}}$, and is defined as:

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

Example What are the components of a unit vector in the same direction as the vector $\mathbf{v}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$?

$$
\begin{aligned}
& \|\vec{v}\|=\sqrt{14} \\
& \Rightarrow \hat{v}=\left(\begin{array}{l}
\frac{1}{\sqrt{14}} \\
\frac{2}{\sqrt{14}} \\
\frac{1}{\sqrt{14}}
\end{array}\right)
\end{aligned}
$$

3 The Angle Between Two Vectors

The vectors ($\left.4 \begin{array}{ll}4\end{array}\right)$ and $\left(\begin{array}{ll}-1 & 2\end{array}\right)$ have dot product $-4+4=0$. If we draw these two vectors, we see they're perpendicular.

This isn't a coincidence. Two vectors are perpendicular if and only if their dot product is 0 .

In general, the dot product can be used to measure the angle between any two vectors. If θ is the angle between vectors \mathbf{u} and \mathbf{v}, then the dot product of \mathbf{u} and \mathbf{v} is related to the angle between them by the formula:

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

If the dot product is negative, then $\theta>90^{\circ}$, while if the dot product is positive, then $\theta<90^{\circ}$. If the dot product is 0 , then $\theta=90^{\circ}$ on the nose.

Example - Find the angle θ between the vectors

$$
\begin{gathered}
u=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \operatorname{and} \mathbf{v}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right) . \\
\vec{u} \cdot \vec{v}=0 \Rightarrow \cos \theta=0 \Rightarrow \theta=90^{\circ}
\end{gathered}
$$

We can use our angle relation to derive two of the most famous inequalities in mathematics.

Schwartz Inequality $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}|\|\mid \mathbf{v}\|$.
Triangle Inequality $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.

Example - Derive the triangle inequality.

$$
\begin{gathered}
(\vec{u}+\vec{v})(\vec{u}+\vec{v})=\vec{u} \cdot \vec{u}+2 \vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v} \\
(\|\vec{u}\|+\|\vec{v}\|)^{2}=\vec{u} \cdot \vec{u}+2\|\vec{u}\|\|\vec{v}\|+\vec{v} \cdot \vec{v} \\
\text { Now, } \vec{u} \cdot \vec{v} \leq\|\vec{u}\|\|\vec{v}\|, \quad 50 \\
(\vec{u}+\vec{v}) \cdot(\vec{v}+\vec{v})=\|\vec{u}+\vec{v}\|^{2} \leq\|\vec{u}\|+\|\vec{v}\|^{2} \\
\Rightarrow\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|
\end{gathered}
$$

I leave the Schwartz inequality as an exercise for you to do on your own. Try it!

