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This lecture covers the first part of section 5.3 from the textbook.

We already know, and in fact have known for quite a while, how to
solve Ax = b. Namely, we use elimination. Cramer’s rule gives us another
way to do it. I think it’s fair to say that Cramer’s rule works better in theory
than it works in practice. What I mean by this is that, in practice, when you
want to actually solve a system of equations you’d never use Cramer’s
rule. It’s not nearly as efficient as elimination. However, when you need to
actually prove things about matrices and linear transformations, Cramer’s
rule can be very, very useful.

The assigned problems for this section are:

Section 5.3 - 1, 6, 7, 8, 16

1 Cramer’s Rule

Cramer’s rule begins with the clever observation
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x1 0 0
x2 1 0
x3 0 1

∣
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= x1

That is to say, if you replace the first column of the identity matrix with

the vector x =





x1

x2

x3



 the determinant is x1. Now, we’ve illustrated this
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for the 3 × 3 case and for column one, but there’s nothing special about a
3 × 3 identity matrix or the first column. In general, if you replace the ith
column of an n × n identity matrix with a vector x, the determinant of the
matrix you get will be xi, the ith component of x.

Well, that’s great. Now what do we do with this information? Well,
note that if Ax = b then



 A









x1 0 0
x2 1 0
x3 0 1



 =





b1 a12 a13

b2 a22 a23

b3 a32 a33



.

If we take determinants of both sides, and note the determinant is mul-
tiplicative, we get

det(A)x1 = det(B1)

where B1 is the matrix we get when we replace column 1 of A by the
vector b. So,

x1 =
det(B1)

det(A)
.

Now, again, there’s nothing special here about column 1, or about them
being 3× 3 matrices. In general if we have the relation Ax = b then the ith
component of x will be

xi =
det(Bi)

det(A)
,

where Bi is the matrix we get by replacing column i of A with b.
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Example
Use Cramer’s rule to solve for the vector x:





−1 2 −3
2 0 1
3 −4 4









x1

x2

x3



 =





1
0
2
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2 Calculating Inverses using Cramer’s Rule

When we multiply two matrices together, the product (in the 3× 3 case) is

AB =



 A







 b1 b2 b3



 =



 Ab1 Ab2 Ab3



.

Here we’ve used two square, 3 × 3 matrices, but the idea works gen-
erally. Each column of the product is the left matrix A multiplied by the
appropriate column of the right matrix B.

To find the inverse of a matrix A, we want to find another matrix B

such that AB = I . Writing it out for the 3 × 3 case we have



 A







 b1 b2 b3



 =



 Ab1 Ab2 Ab3



 =





1 0 0
0 1 0
0 0 1





If this is the case then B = A−1. So, finding the inverse of an n × n

square matrix A amounts to solving n equations of the form

Ax1 =















1
0
0
...
0















, Ax2 =















0
1
0
...
0















, . . . , Axn =















0
0
...
0
1















.

The columns of A−1 will be the vectors x1, . . . , xn. Well, we can find
these vectors using Cramer’s rule.

Going back to the 3×3 case, suppose we want to find (A−1)32. This will
be the third component of the vector x2. Cramer’s rule tells us this will be:

(A−1)32 = (x2)3 =
1

det(A)
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a11 a12 0
a21 a22 1
a31 a32 0
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.
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We can calculate the determinant
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a11 a12 0
a21 a22 1
a31 a32 0
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by a cofactor expansion along colum 3 to get
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a11 a12 0
a21 a22 1
a31 a32 0
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= (−1)2+3

∣

∣

∣
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a11 a12

a31 a32

∣

∣

∣

∣

= (−1)2+3det(M23) = C23

where M23 is the submatrix we get by eliminating column 3 and row 2
of A, and C23 is the (2, 3) cofactor of A. So, what we have is

(A−1)32 =
C23

det(A)
.

Note that the index (3, 2) of the inverse is switched for the index (2, 3)
of the cofactor.

This method works generally. The component (A−1)ij will be

(Aij)
−1 =

1

det(A)
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a11 a12 · · · a1(i−1) 0 a1(i+1) · · · a1n

a21 a22 · · · a2(i−1) 0 a2(i+1) · · · a2n

...
...

. . .
...

...
...

. . .
...

a(j−1)1 a(j−1)2 · · · a(j−1)(i−1) 0 a(j−1)(i+1) · · · a(i−1)n

aj1 aj2 · · · aj(i−1) 1 aj(i+1) · · · ajn

a(j+1)1 a(j+1)2 · · · a(j+1)(i−1) 0 a(j+1)(i+1) · · · a(j+1)n
...

...
. . .

...
...

...
. . .

...
an1 an2 · · · an(i−1) 0 an(i+1) · · · ann
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.

The big, narsty determinant on the right is the determinant of the ma-
trix that we get when we replace column i by the jth column of the iden-
tity, a.k.a. the unit vector in the jth direction. Now, if we do a cofactor
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expansion along column i of that matrix, we can see the determinant is
equal to the cofactor Cji of A. Writing this result succinctly, we have

(A−1)ij =
Cji

det(A)
.

This formula works in general for any n×n matrix A. Please remember,
again, that this isn’t how you’d calculate the inverse in practice. You’d use
elimination. But for theoretical work this formula can be very useful.

We end with some notation. For the matrix A we can define a matrix
of cofactors











C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn











.

The transpose of this matrix











C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
. . .

...
C1n C2n · · · Cnn











is called the adjoint of the matrix A, or adj(A). Using this terminology
we can write

A−1 =

(

1

det(A)

)

adj(A).

We can use this to derive general formulas for an n × n determinant in
the same way we derived the formula

A−1 =
1

ad − bc

(

d −b

−c a

)

for a 2 × 2 matrix. However, as n gets larger, the formulas get messier
and messier.
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Example - Calculate the determinant and the adjoint of the matrix A,
and use them to find the inverse of A.

A =





−1 3 2
0 −2 1
1 0 2



.
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