Math 2270 - Lecture 22 : Projections

Dylan Zwick

Fall 2012

This lecture covers section 4.2 from the textbook.
In our last lecture we learned that if A is an $m \times n$ matrix then every vector $\mathbf{x} \in \mathbb{R}^{n}$ can be written as

$$
\mathbf{x}=\mathbf{x}_{\text {row }}+\mathbf{x}_{\text {null }}
$$

where $\mathbf{x}_{\text {row }}$ is in the rowspace of A, written $\mathbf{x}_{\text {row }} \in \mathbf{C}\left(A^{T}\right)$, and $\mathbf{x}_{\text {null }}$ is in the nullspace of A, written $\mathbf{x}_{\text {null }} \in \mathbf{N}(A)$. We left relatively unexplored how, given the rowspace or the nullspace, we would actually find these vectors $\mathbf{x}_{\text {row }}$ and $\mathbf{x}_{\text {null }}$. In order to find these vectors, we need projections, and projections are the subject of this lecture. The exercises for section 4.2 will be:

Section 4.2 - 1, 11, 12, 13, 17

1 Projections Onto Lines

When we project a vector \mathbf{b} onto a line ${ }^{1}$ we want to find the point on the line closest to the vector \mathbf{b}. Call the vector that points from the origin to this closest point \mathbf{p}, and note that \mathbf{p} is a vector on this line. The vector that points from \mathbf{p} to \mathbf{b} is called the "error vector", and it will be perpendicular to \mathbf{p}, and indeed perpendicular to the line itself.

[^0]We want to figure out how we can calculate \mathbf{p} from the vector \mathbf{b} and the line. Well, a line through the origin can be represented as all multiples of a direction vector \mathbf{a}, and so we'll describe the line using a direction vector a parallel to the line. Our vector \mathbf{p} will be some constant multiple of this direction vector \mathbf{a}, so $\mathbf{p}=\hat{x} \mathbf{a}$. We want to calculate \hat{x}.

Now, the error vector $\mathbf{e}=\mathbf{b}-\mathbf{p}$ will be perpendicular to \mathbf{a}, so

$$
\mathbf{a} \cdot(\mathbf{b}-\hat{x} \mathbf{a})=0
$$

We can rewrite this as

$$
\mathbf{a} \cdot \mathbf{b}=\hat{x} \mathbf{a} \cdot \mathbf{a},
$$

and solve for \hat{x} to get:

$$
\hat{x}=\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}=\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{b}}
$$

I rewrote it using transposes because that's an idea that will generalize beyond just lines. So, to recap, the projection, \mathbf{p}, of a vector \mathbf{b} onto the line spanned by the direction vector a will be:

$$
\mathbf{p}=\frac{\mathbf{a}^{T} \mathbf{b}}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}
$$

Example - Calculate the projection of the vector $\binom{2}{3}$ onto the line spanned by the vector $\binom{1}{1}$.

2 Projection Onto a Subspace

A line in \mathbb{R}^{m} is a one-dimensional subspace. Suppose we have a higherdimensional subspace V, and we want to project a vector \mathbf{b} onto it. First, we need a description of V, and the best description is a set of basis vectors. So, suppose V is a subspace of \mathbb{R}^{m} with basis $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. The projection of \mathbf{b} onto V is the vector in V closest to \mathbf{b}. This projection vector, \mathbf{p}, will be by definition a linear combination of the basis vectors of V :

$$
\mathbf{p}=\hat{x_{1}} \mathbf{a}_{1}+\cdots+\hat{x_{n}} \mathbf{a}_{n} .
$$

If A is a matrix with column vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ and $\hat{\mathbf{x}}$ is a vector with components $\hat{x_{1}}, \ldots, \hat{x_{n}}$ then $\mathbf{p}=A \hat{\mathbf{x}}$. The error vector, the vector that points from \mathbf{p} to \mathbf{b}, will be $\mathbf{e}=\mathbf{b}-\mathbf{p}=\mathbf{b}-A \hat{\mathbf{x}}$. This error vector will be perpendicular to the subspace V, which is equivalent to being perpendicular to the basis vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$. Stated mathematically, this is

$$
\begin{gathered}
\mathbf{a}_{1}^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0, \\
\vdots \\
\mathbf{a}_{n}^{T}(\mathbf{b}-A \hat{\mathbf{x}})=0 .
\end{gathered}
$$

We can write all of the above in matrix form:

$$
A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0}
$$

This in turn can be written as

$$
A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}
$$

If $A^{T} A$ is invertible we can solve for $\hat{\mathbf{x}}$ to get:

$$
\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

Now, the projection vector \mathbf{p} is the vector $A \hat{\mathbf{x}}$, so

$$
\mathbf{p}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

In general, to calculate the projection of any vector onto the space W we multiply the vector by the projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$.

Wow, that was a lot of work! Let's see how we'd actually use these in an example.

$$
\text { Example - If } A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
6 \\
0 \\
0
\end{array}\right) \text { find } \hat{\mathbf{x}} \text { and } \mathbf{p} \text { and } P .
$$

3 So, why is $A^{T} A$ invertible?

We would be remiss if we ended this section without justifying our assumption that $A^{T} A$ is invertible. The idea here is that both A and $A^{T} A$ have the same nullspace. If $\mathbf{x} \in \mathbf{N}(A)$ then $A^{T} A \mathbf{x}=A^{T} \mathbf{0}=\mathbf{0}$. So, $\mathbf{x} \in$ $\mathbf{N}\left(A^{T} A\right)$. That's the easy part. Now, suppose $A^{T} A \mathbf{x}=\mathbf{0}$. This would imply $\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{x}^{T} \mathbf{0}=0$. Now, $\mathbf{x}^{T} A^{T} A \mathbf{x}=(A \mathbf{x})^{T}(A \mathbf{x})=\|A \mathbf{x}\|^{2}$. If $\|A \mathbf{x}\|^{2}=0$ we must have $A \mathbf{x}=\mathbf{0}$, and so $\mathbf{x} \in \mathbf{N}(A)$. Therefore A and $A^{T} A$ both have the same nullspace.

Now, if the columns of A are linearly independent, then $\mathbf{N}(A)=\mathbf{0}$. Therefore $\mathbf{N}\left(A^{T} A\right)=\mathbf{0}$. As $A^{T} A$ is square, if it has trivial nullspace it must be invertible. By assumption the column vectors of the matrix A we used to construct our projection matrix are linearly independent, so $A^{T} A$ has an inverse. Thank goodness!

[^0]: ${ }^{1}$ We'll assume we're always dealing with lines through the origin, as these are the one-dimensional subspaces of \mathbb{R}^{n}.

