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This is the first of two lectures covering section 3.2 of the textbook.

In this lecture and the next, we’re going to study the space of vectors
x that, for a given matrix A, satisfy the equation Ax = 0. This space of
vectors is called the nullspace of the matrix A, or sometimes the kernel of
the matrix A.

1 The Idea of the Nullspace

Suppose we have an m×n matrix A (note that m and n are not necessarily
the same, so we’re allowing rectangular matrices). We want to know for
what vectors x it is the case that Ax = 0. This vector x will be a vector in
R

n, and without knowing anything else about the matrix, sight unseen, I
can tell you what one solution will be. One solution is x = 0. The nullspace
always contains the 0 vector. Sometimes that’s it.
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Example - What is the nullspace of the matrix

A =





1 2 3
2 5 8
3 6 8





In our last lecture we learned that a subset of a vector space is itself a
vector space, called a subspace, if it satisfies two closure axioms. Precisely,
we say a subset W of a vector space V is a subspace if:

1. For w1, w2 ∈ W we have w1 + w2 ∈ W .

2. For w ∈ W we have cw ∈ W for all c ∈ R.1

Well, let’s look at the set of all solutions to the equation Ax = 0. If x1, x2

are solutions then

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0.

Put another way, if x1 and x2 are solutions then so is x1 + x2. Similarly,
if x is a solution then

1Here we’re assuming our scalar field is R, as we usually do.
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A(cx) = cAx = c0 = 0.

So, if x is a solution then cx is a solution for any c ∈ R.

What these two results mean is that the set of all solutions to Ax = 0 is
a subspace of R

n. This is the reason the term “space” appears in the term
nullspace. It is the space of all solutions to Ax = 0, and is denoted N(A).

Example - What are the nullspaces of the following matrices:

A =

(

1 0
0 1

)

B =





1 2 3
2 5 6
3 7 9



 C =





0 0 0
0 0 0
0 0 0





The nullspace of the matrix A =
(

2 3 5
)

is the set of all solutions
Ax = 0. We can write this as the set of all solutions to the equation

x + 3y + 5z = 0.

This is the plane through the origin with normal vector





2
3
5



.
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2 Bases of Nullspaces

Now, let’s take a closer look at the nullspace of the matrix

A =

(

1 2
3 6

)

The nullspace of this matrix will be the set of all solutions x =

(

x1

x2

)

to the systems of linear equations

x1 + 2x2 = 0
3x1 + 6x2 = 0

This is really just one equation. Any choice of x1, x2 that satisfy the
first equation will automatically satisfy the second equation. If we set x2

arbitrarily, we see x1 = −2x2, and in general the nullspace of A consists of

all multiples of s =

(

−2
1

)

.

We call the vector s =

(

−2
1

)

a “special solution” to the system Ax =

0, and the nullspace of A consists of all multiples of this “special solution”.

We’ll be discussing how exactly we find these “special solutions” in the
next lecture, but today we’ll just do a few more examples.

The plane x + 3y + 5z has two special solutions

s1 =





−3
1
0



, and s2 =





−5
0
1





What is “special” about s1 and s2 is that they have ones and zeros in the
last two components. Those components are “free” and we choose them
“specially”. Once we’ve chosen these free components, the first compo-
nent is set and forced to equal −3 and −5, respectively. The reason the last
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two columns are free, while the first column is set, is that the first column
of the matrix

(

1 3 5
)

contains the pivot.

Let’s look at some more examples. In particular, let’s look at the nullspaces
of the three matrices A, B, C:

A =

(

1 2
3 8

)

B =









1 2
3 8
1 5
2 10









C =

(

1 2 2 4
3 8 6 16

)

If we perform elimination on the first matrix A we get

(

1 2
0 2

)

which has two pivots, one in each column. None of the components
are free, and the only solution to Ax = 0 is the “trivial” solution x = 0.

The first two rows of the matrix B give us the matrix A. The next two
rows just add more equations that must be satisfied, and so provide more
restrictions. The first two rows already require that the only solution is
x = 0, and the two new rows do not, and in fact cannot, change this.2

Finally, for the matrix C, if we perform elimination we get the follow-
ing matrix

(

1 2 2 4
0 2 0 4

)

Here, the first and second columns are pivot columns, while the third
and fourth columns are free columns.

If we choose x3 = 1 and x4 = 0 for the free variables we get x1 = −2
and x2 = 0. If we choose x3 = 0 and x4 = 1 for the free variables we get
x1 = 0 and x2 = −2. So, the two “special” solutions are

2The zero vector is always a solution, no matter what, and if it’s the only solution then
putting more restrictions on our system cannot increase the number of solutions, nor can
it decrease it past this one solution.
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s1 =









−2
0
1
0









s2 =









0
−2
0
1









All other solutions to Cx = 0 are linear combinations of the above two
special solutions.

Now, we don’t have to stop elimination after we eliminate downward.
We can also eliminate upward and/or divide a whole row by its pivot.
These operations don’t change the nullspace. When we do this, deter-
mining our set components from our free components is even easier. The
totally reduced form of C will be

R =

(

1 0 2 0
0 1 0 2

)

Using this totally reduced form, it’s even easier to solve for x1 and x2

given x3 and x4.

Example - Completely reduce, and find special solution to, the equation
Ax = 0 for the matrix

A =

(

0 −2 3
4 0 11

)

.
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