
Math 2270 - Lecture 11: Transposes and
Permutations

Dylan Zwick

Fall 2012

This lecture covers section 2.7 of the textbook.

1 Transposes

The transpose of a matrix is the matrix you get when you switch the rows
and the columns. For example, the transpose of

(1 23
2 1 4

is the matrix

/1 2
(21

4

We denote the transpose of a matrix A by AT. Formally, we define

(AT) =

1



Example - Calculate the transposes of the following matrices

(H) () ()

(4) (
/ZSF /
3J

The transpose of the sum of two matrices is the sum of the transposes

(A+B)T=AT+BT

which is pretty straightforward. What is less straightforward is the rule
for products

(AB)T BTAT

The book has a proof of the above. Check it out. Another proof is to
just look at the definition of matrix products and note

(AB) AB3, = = = (BTAT)
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The transpose of the identity matrix is still the identity matrix 1T

Knowing this and using our above result it’s quick to get the transpose of
an inverse

AA’ =
= = (AA1)T = (A)TAT

So, the inverse of AT is (A_l)T. Stated otherwise (AT)i = (A_l)T. J
words, the inverse of the transpose is the transpose of the inverse.

Example - Find AT and A’ and (A_1)T and (AT)l for

A=( )
AT (19)

)-I

( ) (A’) (

2 Symmetric Matrices

A symmetric matrix is a matrix that is its own transpose. Stated slightly
more mathematically, a matrix A is symmetric if A — AT. Note that, obvi
ously, all symmetric matrices are square matrices.

For example, the matrix
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/i 2 3
(214

3 4 1

is symmetric. Note (A_l)T = (AT)_1 = A—’, so the inverse of a sym
metric matrix is itself symmetric.

For any matrix, square or not, we can construct a symmetric product.
There are two ways to do this. We can take the product RTR, or the prod
uct RRT. The matrices RTR and RRT will both be square and both be
symmetric, but will rarely be equal. In fact, if R is not square, the two will
not even be the same size.

We can see this in the matrix

R_h1 1 0
0 —1 1

The two symmetric products are

RTR( ‘ ;
These two symmtric products are unequaP, but both are symmetric.

Also, note that none of the diagonal terms is negative. This is not a coinci
dence.

‘They’re not even the same size!
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Example - Why are all diagonal terms on a symmetric product non
negative?

I q / ri o

-P )- (cc/m

)- (c/v / ôf R)

‘ *h o
vh Ise/ Aich ñ Ai17

Returning to the theme of the last lecture, if A is symmetric then the
LDU factorization A = LDU has a particularly simple form. Namely, if
A=ATthenU=LTandA=LDLT.

Example - Factor the following matrix into A = LDU form and verify
U=LT

A=( )

() (

1



3 Permutation Matrices

A permutation matrix is a square matrix that rearranges the rows of an
other matrix by multiplication. A permutation matrix P has the rows of
the identity I in any order. For ri x n matrices there are n! permutation
matrices. For example, the matrix

/0 0 1
P= ( 1 0 0

0 1 0

Puts row 3 in row 1, row 1 in row 2, and row 2 in row 3. In cycle
notation2we’d represent this permutation as (123).

Example - What is the 3 x 3 permutation matrix that switches rows 1
and 3?

/00(

(oa
03

Now, if you recall from elimination theory we sometime have to switch
rows to get around a zero pivot. This can mess up our nice A = LDU
form. So, we usually assume we’ve done all the permutations we need to
do before we start elimination, and write this as PA = LDU, where P is a
permutation matrix such that elimination works. The book mentions this,
but says not to worry too much about it. I agree.

2Don’t worry if you don’t know what that means.
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