Math 2270 - Lecture 11: Transposes and Permutations

Dylan Zwick

Fall 2012

This lecture covers section 2.7 of the textbook.

1 Transposes

The transpose of a matrix is the matrix you get when you switch the rows and the columns. For example, the transpose of

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 4
\end{array}\right)
$$

is the matrix

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 4
\end{array}\right)
$$

We denote the transpose of a matrix A by A^{T}. Formally, we define

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

Example - Calculate the transposes of the following matrices

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

The transpose of the sum of two matrices is the sum of the transposes

$$
(A+B)^{T}=A^{T}+B^{T}
$$

which is pretty straightforward. What is less straightforward is the rule for products

$$
(A B)^{T}=B^{T} A^{T}
$$

The book has a proof of the above. Check it out. Another proof is to just look at the definition of matrix products and note

$$
(A B)_{i j}^{T}=A B_{j i}=\sum_{k} A_{j k} B_{k i}=\sum_{k} B_{k i} A_{j k}=\sum_{k} B_{i k}^{T} A_{k j}^{T}=\left(B^{T} A^{T}\right)_{i j}
$$

The transpose of the identity matrix is still the identity matrix $I^{T}=I$. Knowing this and using our above result it's quick to get the transpose of an inverse

$$
A A^{-1}=I=I^{T}=\left(A A^{-1}\right)^{T}=\left(A^{-1}\right)^{T} A^{T}
$$

So, the inverse of A^{T} is $\left(A^{-1}\right)^{T}$. Stated otherwise $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. In words, the inverse of the transpose is the transpose of the inverse.

Example - Find A^{T} and A^{-1} and $\left(A^{-1}\right)^{T}$ and $\left(A^{T}\right)^{-1}$ for

$$
A=\left(\begin{array}{ll}
1 & 0 \\
9 & 3
\end{array}\right)
$$

2 Symmetric Matrices

A symmetric matrix is a matrix that is its own transpose. Stated slightly more mathematically, a matrix A is symmetric if $A=A^{T}$. Note that, obviously, all symmetric matrices are square matrices.

For example, the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 4 \\
3 & 4 & 1
\end{array}\right)
$$

is symmetric. Note $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=A^{-1}$, so the inverse of a symmetric matrix is itself symmetric.

For any matrix, square or not, we can construct a symmetric product. There are two ways to do this. We can take the product $R^{T} R$, or the product $R R^{T}$. The matrices $R^{T} R$ and $R R^{T}$ will both be square and both be symmetric, but will rarely be equal. In fact, if R is not square, the two will not even be the same size.

We can see this in the matrix

$$
R=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

The two symmetric products are

$$
\begin{gathered}
R R^{T}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \\
R^{T} R=\left(\begin{array}{cc}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
\end{gathered}
$$

These two symmtric products are unequal ${ }^{1}$, but both are symmetric. Also, note that none of the diagonal terms is negative. This is not a coincidence.

[^0]Example - Why are all diagonal terms on a symmetric product nonnegative?

Returning to the theme of the last lecture, if A is symmetric then the $L D U$ factorization $A=L D U$ has a particularly simple form. Namely, if $A=A^{T}$ then $U=L^{T}$ and $A=L D L^{T}$.

Example - Factor the following matrix into $A=L D U$ form and verify $U=L^{T}$

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 7
\end{array}\right)
$$

3 Permutation Matrices

A permutation matrix is a square matrix that rearranges the rows of another matrix by multiplication. A permutation matrix P has the rows of the identity I in any order. For $n \times n$ matrices there are n ! permutation matrices. For example, the matrix

$$
P=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Puts row 3 in row 1, row 1 in row 2, and row 2 in row 3. In cycle notation ${ }^{2}$ we'd represent this permutation as (123).

Example - What is the 3×3 permutation matrix that switches rows 1 and 3 ?

Now, if you recall from elimination theory we sometime have to switch rows to get around a zero pivot. This can mess up our nice $A=L D U$ form. So, we usually assume we've done all the permutations we need to do before we start elimination, and write this as $P A=L D U$, where P is a permutation matrix such that elimination works. The book mentions this, but says not to worry too much about it. I agree.

[^1]
[^0]: ${ }^{1}$ They're not even the same size!

[^1]: ${ }^{2}$ Don't worry if you don't know what that means.

