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This lecture covers section 2.7 of the textbook.

1 Transposes

The transpose of a matrix is the matrix you get when you switch the rows
and the columns. For example, the transpose of

(

1 2 3
2 1 4

)

is the matrix





1 2
2 1
3 4





We denote the transpose of a matrix A by AT . Formally, we define

(AT )ij = Aji
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Example - Calculate the transposes of the following matrices





1 2
3 4
5 6





(

2 3
1 4

) (

2 1
1 3

)

The transpose of the sum of two matrices is the sum of the transposes

(A + B)T = A
T + B

T

which is pretty straightforward. What is less straightforward is the rule
for products

(AB)T = B
T
A

T

The book has a proof of the above. Check it out. Another proof is to
just look at the definition of matrix products and note

(AB)T
ij = ABji =

∑

k

AjkBki =
∑

k

BkiAjk =
∑

k

B
T
ikA

T
kj = (BT

A
T )ij
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The transpose of the identity matrix is still the identity matrix IT = I .
Knowing this and using our above result it’s quick to get the transpose of
an inverse

AA
−1 = I = I

T = (AA
−1)T = (A−1)T

A
T

So, the inverse of AT is (A−1)T . Stated otherwise (AT )−1 = (A−1)T . In
words, the inverse of the transpose is the transpose of the inverse.

Example - Find AT and A−1 and (A−1)T and (AT )−1 for

A =

(

1 0
9 3

)

2 Symmetric Matrices

A symmetric matrix is a matrix that is its own transpose. Stated slightly
more mathematically, a matrix A is symmetric if A = AT . Note that, obvi-
ously, all symmetric matrices are square matrices.

For example, the matrix
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



1 2 3
2 1 4
3 4 1





is symmetric. Note (A−1)T = (AT )−1 = A−1, so the inverse of a sym-
metric matrix is itself symmetric.

For any matrix, square or not, we can construct a symmetric product.
There are two ways to do this. We can take the product RT R, or the prod-
uct RRT . The matrices RT R and RRT will both be square and both be
symmetric, but will rarely be equal. In fact, if R is not square, the two will
not even be the same size.

We can see this in the matrix

R =

(

−1 1 0
0 −1 1

)

The two symmetric products are

RR
T =

(

−1 1 0
0 −1 1

)





−1 0
1 −1
0 1



 =

(

2 −1
−1 2

)

R
T
R =





−1 0
1 −1
0 1





(

−1 1 0
0 −1 1

)

=





1 −1 0
−1 2 −1
0 −1 1





These two symmtric products are unequal1, but both are symmetric.
Also, note that none of the diagonal terms is negative. This is not a coinci-
dence.

1They’re not even the same size!
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Example - Why are all diagonal terms on a symmetric product non-
negative?

Returning to the theme of the last lecture, if A is symmetric then the
LDU factorization A = LDU has a particularly simple form. Namely, if
A = AT then U = LT and A = LDLT .

Example - Factor the following matrix into A = LDU form and verify
U = LT

A =

(

1 2
2 7

)
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3 Permutation Matrices

A permutation matrix is a square matrix that rearranges the rows of an-
other matrix by multiplication. A permutation matrix P has the rows of
the identity I in any order. For n × n matrices there are n! permutation
matrices. For example, the matrix

P =





0 0 1
1 0 0
0 1 0





Puts row 3 in row 1, row 1 in row 2, and row 2 in row 3. In cycle
notation2 we’d represent this permutation as (123).

Example - What is the 3 × 3 permutation matrix that switches rows 1
and 3?

Now, if you recall from elimination theory we sometime have to switch
rows to get around a zero pivot. This can mess up our nice A = LDU

form. So, we usually assume we’ve done all the permutations we need to
do before we start elimination, and write this as PA = LDU , where P is a
permutation matrix such that elimination works. The book mentions this,
but says not to worry too much about it. I agree.

2Don’t worry if you don’t know what that means.
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