Math 2270 - Lecture 10: LU Factorization
 Dylan Zwick

Fall 2012

This lecture covers section 2.6 of the textbook.

1 The Matrices L and U

In elimination what we do is we take a system of equations and convert it into an upper-triangular system. Viewed from the matrix perspective, what we're doing is taking an equation

$$
A \mathbf{x}=\mathbf{b}
$$

and finding an elimination matrix E such that $E A$ is upper-triangular. The system

$$
E A \mathbf{x}=E \mathbf{b}
$$

then becomes much easier to solve. If we write $E A=U$, indicating $E A$ is upper-triangular, then our equation is

$$
U \mathbf{x}=E \mathbf{b}
$$

What might not be obvious here is that the matrix E is lower-triangular and invertible, and on top of that its inverse E^{-1} is also lower-triangular. Denote this inverse $E^{-1}=L$. Then if we multiply both sides of the above equation by $L=E^{-1}$ we get

$$
L U \mathbf{x}=L E \mathbf{b}=E^{-1} E \mathbf{b}=\mathbf{b}
$$

This looks an awful lot like our original equation $A \mathbf{x}=\mathbf{b}$, and in fact it is our original equation in disguise. This is because $A=L U$. So, we've factored A as the product of two matrices, one upper-triangular and the other lower-triangular. Note that throughout this discussion and for the rest of the lecture we'll assume our matrix A is invertible.

2 The Nuts and Bolts of LU Factoriztion

We're now going to take a deeper look at $L U$ factorization, using the $L U$ factorization of

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

as our running example. To get our matrix U we need to perform elimination on the matrix A, and the first step in elimination here is to subtract $\frac{1}{2}$ the first row from the second. This is achieved with the elimination matrix

$$
E_{12}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We note that the above elimination matrix is lower-triangular. In fact, all our elimination matrices will be lower-triangular, because in elimination we're always subtracting a higher row from a lower row. ${ }^{1}$ Performing our first elimination step we obtain

$$
E_{12} A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{3}{2} & 1 \\
0 & 1 & 2
\end{array}\right)
$$

[^0]All the terms below our pivot in the first column are now 0 , so we move on to the second pivot in row 2 , and the second column. We want to subtract $\frac{2}{3}$ the second row from the third. This operation is accomplished by the elimination matrix

$$
E_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{2}{3} & 1
\end{array}\right)
$$

The result of the next step in elimination is

$$
E_{23} E_{12} A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{2}{3} & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{3}{2} & 1 \\
0 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & \frac{3}{2} & 1 \\
0 & 0 & \frac{4}{3}
\end{array}\right)
$$

This is the conclusion of elimination, as our transformed matrix is now upper-triangular. We can multiply E_{23} and E_{12} to get our matrix $E=$ $E_{23} E_{12}$ that transforms A directly into U. This matrix is

$$
E=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{2}{3} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
\frac{1}{3} & -\frac{2}{3} & 1
\end{array}\right)
$$

Note the $\frac{1}{3}$ term in the bottom-left. This is because as we do elimination we first subtract $\frac{1}{2}$ of row 1 from row 2 , and then subtract $\frac{2}{3}$ of the modified row 2 from row 3 . This means that in the end we subtract $-\frac{2}{3}$ of the original row 2 from row 3 , and add $\frac{1}{3}$ of the original row 1 to row 3 . Kind of complicated, isn't it? The amazing thing is that this entanglement doesn't show up when we look at the inverse of E. The inverse of E will be

$$
E^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & \frac{2}{3} & 1
\end{array}\right)
$$

What's going on here? Well, the idea is that the matrix E^{-1} takes U and takes it back to A :

$$
E^{-1} U=A
$$

Now, we derived U from A through elimination. When we do elimination we might change the rows of A, but once those rows become the final rows we see in U we stop. Once we have a pivot row, it never changes again. In our particular example we have

$$
\text { Row } 3 \text { of } U=(\text { Row } 3 \text { of } A)-\frac{2}{3} \text { (Row } 2 \text { of } U \text {). }
$$

When computing the third row of U, we subtract multiples of earlier rows of U, not rows of A. However, if we want to figure out row 3 of A, then doing some algebra on the above equation we get

$$
\text { Row } 3 \text { of } A=(\text { Row } 3 \text { of } U)+\frac{2}{3}(\text { Row } 2 \text { of } U) \text {. }
$$

The equation for row 3 of A involves just the rows of U, and no other row of A.

Finally, one could argue that, in some sense. the factorization $A=L U$ isn't complete. The lower-triangular matrix will always have 1 terms on the diagonal, while the upper-triangular matrix will not. Sometimes we want to make sure the upper-triangular matrix has 1 terms on the diagonal as well, and so we factor our matrix as

$$
A=L D U
$$

where D is a diagonal matrix consisting of the pivots, L is lower-triangular with 1 entries on the diagonal, and U is upper-triangular with 1 entries on the diagonal.

Example - Factor the matrix

$$
A=\left(\begin{array}{ll}
2 & 1 \\
6 & 8
\end{array}\right)
$$

into $A=L U$ form and into $A=L D U$ form.
Elimination = Subtract $3 x$ row 1 from row 2

$$
\Rightarrow\left(\begin{array}{ll}
2 & 1 \\
0 & 5
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
6 & 8
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
0 & 5
\end{array}\right)
$$

$\left(\begin{array}{ll}2 & 1 \\ 0 & 5\end{array}\right)$ is upper triangular

$$
\left.\begin{array}{l}
L=\left(\begin{array}{ll}
1 & 0 \\
-3 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
2 & 1 \\
6 & 8
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
0 & 5
\end{array}\right) \quad L U \text { form } \\
0
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
0 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right) .
$$

[^0]: ${ }^{1}$ We're going to assume throughout this lecture that we don't need to permute any rows as part of elimination.

