
Math 2270 - Lecture 10: LU Factorization

Dylan Zwick

Fall 2012

This lecture covers section 2.6 of the textbook.

1 The Matrices L and U

In elimination what we do is we take a system of equations and convert
it into an upper-triangular system. Viewed from the matrix perspective,
what we’re doing is taking an equation

Ax=b

and finding an elimination matrix E such that EA is upper-triangular.
The system

EAx=Eb

then becomes much easier to solve. If we write EA = U, indicating EA
is upper-triangular, then our equation is

UxrrrEb

What might not be obvious here is that the matrix E is lower-triangular
and invertible, and on top of that its inverse E’ is also lower-triangular.
Denote this inverse E’ = L. Then if we multiply both sides of the above
equation by L = we get
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LUx = LEb E’Eb = b

This looks an awful lot like our original equation Ax = b, and in fact
it is our original equation in disguise. This is because A = LU. So, we’ve
factored A as the product of two matrices, one upper-triangular and the
other lower-triangular. Note that throughout this discussion and for the
rest of the lecture we’ll assume our matrix A is invertible.

2 The Nuts and Bolts of LU Factoriztion

We’re now going to take a deeper look at LU factorization, using the LU
factorization of

/2 1 0
A= f 1 2 1

1 2

as our running example. To get our matrix U we need to perform elimi
nation on the matrix A, and the first step in elimination here is to subtract
the first row from the second. This is achieved with the elimination matrix

/i 00
E12= f — 1 0

01

We note that the above elimination matrix is lower-triangular. In fact,
all our elimination matrices will be lower-triangular, because in elimina
tion we’re always subtracting a higher row from a lower row.1 Performing
our first elimination step we obtain

/ 1 0 0’\ /2 1 o\ /2 1 0
E12A=( — 1 0 1 2 1 )=f 0 1

\ 0 0 1) \0 1 2) \0 1 2

‘We’re going to assume throughout this lecture that we don’t need to permute any
rows as part of elimination.
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All the terms below our pivot in the first column are now 0, so we
move on to the second pivot in row 2, and the second column. We want to
subtract the second row from the third. This operation is accomplished
by the elimination matrix

/1 0 0
E23=( 0 1 0

\o — 1

The result of the next step in elimination is

/1 0 0 (2 1 o\ /2 1 0
E23E12A=f0 1 o)(oi)=(oi

\\o
—

1) \o 1 2) \o 0

This is the conclusion of elimination, as our transformed matrix is now
upper-triangular. We can multiply E23 and E12 to get our matrix E =

E23E12 that transforms A directly into U. This matrix is

/1 0 o\ / 1 0 0’\ / 1 0 0
E=(0 1 oj(— 1 o)=(— 1 0

\\O — 1) 0 0 1) \ — 1

Note the term in the bottom-left. This is because as we do elimination
we first subtract of row 1 from row 2, and then subtract of the modified
row 2 from row 3. This means that in the end we subtract — of the orig
inal row 2 from row 3, and add of the original row 1 to row 3. Kind of
complicated, isn’t it? The amazing thing is that this entanglement doesn’t
show up when we look at the inverse of E. The inverse of E will be

/1 00
E’= ( 1 0

1

What’s going on here? Well, the idea is that the matrix E1 takes U and
takes it back to A:
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E’U = A

Now, we derived U from A through elimination. When we do elimina
tion we might change the rows of A, but once those rows become the final
rows we see in U we stop. Once we have a pivot row, it never changes
again. In our particular example we have

Row 3 of U (Row 3 of A) - (Row 2 of U).

When computing the third row of U, we subtract multiples of earlier
rows of U, not rows of A. However, if we want to figure out row 3 of A,
then doing some algebra on the above equation we get

Row 3 of A = (Row 3 of U) + (Row 2 of U).

The equation for row 3 of A involves just the rows of U, and no other
row of A.

Finally, one could argue that, in some sense. the factorization A = LU
isn’t complete. The lower-triangular matrix will always have 1 terms on
the diagonal, while the upper-triangular matrix will not. Sometimes we
want to make sure the upper-triangular matrix has 1 terms on the diagonal
as well, and so we factor our matrix as

ALDU

where D is a diagonal matrix consisting of the pivots, L is lower-triangular
with 1 entries on the diagonal, and U is upper-triangular with 1 entries on
the diagonal.
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