# Math 2270 - Practice Exam 4 

## University of Utah

Fall 2012


This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. Cofactor Matrices (15 points)

Calculate the cofactor matrix of $A$ :

$$
\begin{array}{r}
A=\left(\begin{array}{ll}
4 & 3 \\
2 & 8
\end{array}\right) \\
C=\left(\begin{array}{cc}
8 & -2 \\
-3 & 4
\end{array}\right)
\end{array}
$$

2. Eigenvalues ( 20 points)

Find the eigenvalues and the corresponding eigenvectors of

$$
\begin{aligned}
\left|\begin{array}{cc}
2-\lambda & -12 \\
1-5-\lambda
\end{array}\right| & =\left(2-\left(\begin{array}{cc}
2 & -12 \\
1 & -5
\end{array}\right)\right. \\
& =\lambda^{2}+3 \lambda+2=(-5-\lambda)-(-12)(1)
\end{aligned}
$$

So, eigenvalues $\lambda=-1,-2$

$$
\begin{aligned}
& \lambda=-1\left(\begin{array}{ll}
3 & -12 \\
1 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{4}{1} \\
& \lambda=-2\left(\begin{array}{ll}
4 & -12 \\
1 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{3}{1}
\end{aligned}
$$

Eigen vectors $\binom{4}{1},\binom{3}{1}$
3. Diagonalization ( 20 points)

Diagonalize the matrix

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \\
& =-(\lambda+2)(\lambda-4)(\lambda+2) \\
& \lambda^{3}=4,-2,-2 \\
& \lambda=4\left(\begin{array}{ccc}
-3 & 3 & 0 \\
3 & -3 & 0 \\
0 & 0 & -6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \vec{x}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
& \lambda=-2\left(\begin{array}{ccc}
3 & 3 & 0 \\
3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Rightarrow \vec{x}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \text { or }\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

orthonormalize $\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

4. Positive Definite Matrices ( 10 points)

Prove that if $A$ is positive definite, and $B$ is positive definite, then $A+B$ is positive definite. (Hint - A matrix is positive definite if $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq 0$.)

Suppose $A$ and $B$ are positive definite, Then

$$
\begin{aligned}
& \qquad \vec{x}^{\top}(A+B) \vec{x}=\vec{x}^{+} A \vec{x}+\vec{x}+B \vec{x}>0 \\
& \text { for all } \vec{x} \text { as } \vec{x}^{\top} A \vec{x}, \vec{x}^{\top} B \vec{x}>0 \\
& \text { for all } \vec{x} \text {. }
\end{aligned}
$$

5. Jordan Form

If a matrix has eigenvalues $\lambda=2,2,1,0$ what are all the possible Jordan forms of the matrix?

6. Singular Value Decomposition (20 points)

Calculate the singular value decomposition of the matrix

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \\
& A^{+} A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
& \left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda=\lambda(\lambda-2) \\
& \lambda=2,0 \\
& \left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \vec{x}=\binom{1}{1} \quad \vec{v}_{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \\
& A \vec{v}_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\binom{\sqrt{2}}{0}=\sqrt{2}\binom{1}{0} \quad \vec{u}_{1}=\binom{1}{0} \\
& a_{1}=\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\sqrt{2}}{0}\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

7. Linear Transformations ( 15 points)
(a) Is the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ defined by

$$
T\left(v_{1}, v_{2}\right)=2 v_{1}+v_{2}
$$

a linear transformation? Explain why or provide a counterexample.

$$
\begin{gathered}
T\left(u_{1}+v_{1}, u_{2}+v_{2}\right)=2\left(u_{1}+v_{1}\right)+u_{2}+v_{2} \\
=\left(2 u_{1}+u_{2}\right)+\left(2 v_{1}+v_{2}\right)=T\left(u_{1}, u_{2}\right)+T\left(v_{1}, v_{2}\right) \\
T\left(c v_{1}, c v_{2}\right)=2 c v_{1}+c v_{2}=c\left(2 u_{1}+v_{2}\right) \\
=c T\left(v_{1}, v_{2}\right) \text { so, linear }
\end{gathered}
$$

(b) Is the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(v_{1}, v_{2}\right) \rightarrow\left(2 v_{1}, 3 v_{1}+2 v_{2}, v_{1} v_{2}\right)
$$

a linear transformation? Explain why or provide a counterexample.

$$
\begin{aligned}
& \vec{u}=\binom{1}{0} \stackrel{\text { example. }}{\vec{v}=\binom{0}{81}} \\
& T(\vec{u}+\vec{v})=T(1,1)=(2,5,1) \times \\
& T(u)+T(v)=(2,3,0)+(0,2,0)=(2,5,0)
\end{aligned}
$$



