Math 2270 - Practice Exam 4

University of Utah

Fall 2012

Name:
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. Cofactor Matrices (15 points)

Calculate the cofactor matrix of A :

$$
A=\left(\begin{array}{ll}
4 & 3 \\
2 & 8
\end{array}\right)
$$

2. Eigenvalues (20 points)

Find the eigenvalues and the corresponding eigenvectors of

$$
A=\left(\begin{array}{cc}
2 & -12 \\
1 & -5
\end{array}\right)
$$

3. Diagonalization (20 points)

Diagonalize the matrix

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

4. Positive Definite Matrices (10 points)

Prove that if A is positive definite, and B is positive definite, then $A+B$ is positive definite. (Hint - A matrix is positive definite if $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq 0$.)
5. Jordan Form

If a matrix has eigenvalues $\lambda=2,2,1,0$ what are all the possible Jordan forms of the matrix?
6. Singular Value Decomposition (20 points)

Calculate the singular value decomposition of the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

7. Linear Transformations (15 points)
(a) Is the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ defined by

$$
T\left(v_{1}, v_{2}\right)=2 v_{1}+v_{2}
$$

a linear transformation? Explain why or provide a counterexample.
(b) Is the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(v_{1}, v_{2}\right) \rightarrow\left(2 v_{1}, 3 v_{1}+2 v_{2}, v_{1} v_{2}\right)
$$

a linear transformation? Explain why or provide a counterexample.

