Math 2270 - Exam 3

University of Utah

Fall 2012
Name:
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (9 Points) The Four Subspaces

- (3 points) The nullspace is the orthogonal complement of the rouspare
- (3 points) If an $m \times n$ matrix has a d-dimensional column space, then its left nullspace has dimension \qquad
- (3 points) For an $m \times n$ matrix A calculate:

$$
\begin{gathered}
\operatorname{dim}(\mathbf{C}(A))+\operatorname{dim}(\mathbf{N}(A))+\operatorname{dim}\left(\mathbf{C}\left(A^{T}\right)\right)+\operatorname{dim}\left(\mathbf{N}\left(A^{T}\right)\right) . \\
=m+n
\end{gathered}
$$

2. (8 points) Orthogonal Complements - Find a basis for the orthogonal complement of the vector space

$$
\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\} .
$$

It will be the nullspare of the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0
\end{array}\right) \text { which is } \operatorname{span}\left\{\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
$$

3. (20 points) Projections - Find the projection of the vector \mathbf{b} onto the column space of the matrix A :

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{l}
2 \\
1 \\
0 \\
2
\end{array}\right) . \\
& A^{\top}=\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
-1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \quad A^{+} A=\left(\begin{array}{lll}
3 & 0 & 3 \\
0 & 3 & 1 \\
3 & 1 & 4
\end{array}\right) \\
& A^{+} \vec{b}=\left(\begin{array}{rlll}
1 & 1 & 0 & 1 \\
-1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{c}
5 \\
-1 \\
5
\end{array}\right) \quad A^{+} A \vec{x}=A^{+} \vec{b} \\
& \left(\begin{array}{llll}
3 & 0 & 3 & 5 \\
0 & 3 & 1 & -1 \\
3 & 1 & 4 & 5
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
3 & 0 & 3 & 5 \\
0 & 3 & 1 & -1 \\
0 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
3 & 0 & 3 & 5 \\
0 & 3 & 1 & -1 \\
0 & 0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right) \\
& \left(\begin{array}{lll}
3 & 0 & 3 \\
0 & 3 & 1 \\
0 & 0 & \frac{2}{3}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-5 \\
-1 \\
\frac{1}{3}
\end{array}\right) \Rightarrow \begin{array}{l}
x_{3}=\frac{1}{2} \\
x_{2}=-\frac{1}{2} \\
x_{1}=\frac{7}{6}
\end{array} \quad \vec{x}=\left(\begin{array}{c}
\frac{7}{6} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) \\
& A \vec{x}=\vec{p} \Rightarrow \vec{p}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
4 \\
\frac{7}{6} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)=\left(\begin{array}{c}
\frac{13}{6} \\
\frac{7}{6} \\
0 \\
\frac{10}{6}
\end{array}\right)=\left(\begin{array}{c}
13 \\
7 \\
0 \\
10
\end{array}\right)
\end{aligned}
$$

4. (15 points) Linear Regression - Find the least squares regression line through the points $(1,0),(2,1)$, and $(3,3)$.

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right) \hat{\vec{x}}=\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right) \quad A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right) \\
& A^{\top}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right) \quad A^{\top} A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
3 & 6 \\
6 & 14
\end{array}\right) \\
& A^{+} \vec{b}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)=\binom{4}{11} \\
& \left(\begin{array}{ll}
3 & 6 \\
6 & 14
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{11} \Rightarrow \begin{array}{l}
x_{1}=-\frac{5}{3} \\
x_{2}=\frac{3}{2} \\
Y=-\frac{5}{3}+\frac{3}{2} x
\end{array}
\end{aligned}
$$

5. (15 points) Orthonormal Bases - Find an orthonormal basis for the vector space

Use Gram-Schmidf span $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)\right\}$.

$$
\begin{aligned}
& \vec{A}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
& \vec{B}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-\frac{\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)}{(1} 101\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-\left(\begin{array}{c}
\frac{3}{2} \\
\frac{3}{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right) \\
& \left.\vec{C}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)-\frac{\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)}{\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\frac{\left(\begin{array}{lll}
-\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
2
\end{array}\right)}{\left(-\frac{1}{2} \frac{1}{2}\right.} 0\right)\binom{-\frac{1}{2}}{\frac{1}{2}}\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)-\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right)-\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
2
\end{array}\right)^{\binom{\frac{1}{2}}{0}}
\end{aligned}
$$

Or tho normal:

$$
\vec{q}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \vec{q}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \quad 6 \quad \vec{q}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

6. (8 points) Properties of Matrices - Using the three fundamental properties of the determinant (determinant of the identity is 1 , switching rows switches the sign, linearity for each row) prove that a matrix with a row of 0 s has determinant 0 .

Multiplying the row by t doesn't change the matrix. But, by linearity this multiplies the determinant by t So,

$$
d e+(A)=t d e+(A)
$$

for all $t \in \mathbb{R}$.

$$
\Rightarrow \quad \operatorname{det}(A)=0
$$

7. (15 points) Calculating Determinants - Calculate the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & 2 \\
1 & 1 & -1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right)
$$

Use elimination:

$$
\left.\begin{array}{rl}
A=\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
2 & 1 & 0 & 2 \\
1 & 1 & -1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & 0 \\
0 & 1 & 0 & -1 \\
0 & 2 & 4 & -3
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & 0 \\
0 & 0 & -2 & -1 \\
0 & 0 & 0 & -3
\end{array}\right) \Rightarrow \operatorname{det}(A)
\end{array}\right)=1 \times 1 \times-2 \times-3 .
$$

8. (10 points) Other Ways of Calculating Determinants - Calculate the determinant of the matrix

$$
\left(\begin{array}{lll}
2 & 3 & 1 \\
3 & 1 & 2 \\
2 & 0 & 4
\end{array}\right)
$$

using a cofactor expansion along row 3 .

$$
\begin{aligned}
& 2\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|-0\left|\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right|+4\left|\begin{array}{ll}
2 & 3 \\
3 & 1
\end{array}\right| \\
& =2(5)+4(2-9)=10-28=-18
\end{aligned}
$$

