Math 2270 - Practice Exam 3

University of Utah

Fall 2012

This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (9 Points) The Four Subspaces

- (3 points) The rowspace is the orthogonal complement of the nullspace
- (3 points) If an $m \times n$ matrix has a d-dimensional nullspace, then its rowspace has dimension \qquad
- (3 points) For an $m \times n$ matrix A calculate:

$$
\begin{aligned}
& \operatorname{dim}(\mathbf{C}(A))+\operatorname{dim}\left(\mathbf{N}\left(A^{T}\right)\right) . \\
& =m
\end{aligned}
$$

2. (8 points) Orthogonal Complements - Find a basis for the orthogonal complement of the vector space

$$
\begin{aligned}
& \operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right\} \\
(125) & =\operatorname{span} \begin{cases}1 & \left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) \\
& =\binom{-3}{0}\end{cases}
\end{aligned}
$$

3. (20 points) Projections - Find the projection of the vector \mathbf{b} onto the column space of the matrix A :

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
-1 \\
0 \\
1
\end{array}\right) \\
& \begin{array}{l}
A^{+}=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad A^{+} A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 &
\end{array}\right) \\
A^{+} \vec{b}=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{lll}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{array}\right)
\end{array} \\
& \left(\begin{array}{lll}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right) \\
& \left.\begin{array}{l}
\left(\begin{array}{llll}
3 & 2 & 2 & 4 \\
2 & 3 & 2 & 0 \\
2 & 2 & 3 & 3
\end{array}\right)
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
3 & 2 & 2 & 4 \\
0 & \frac{5}{3} & \frac{2}{3} & -\frac{8}{3} \\
0 & \frac{2}{3} & \frac{5}{3} & \frac{1}{3}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
3 & 2 & 2 & 4 \\
0 & \frac{5}{3} & \frac{2}{3} & -\frac{8}{3} \\
0 & 0 & \frac{7}{5} & \frac{7}{5}
\end{array}\right) \\
& \left(\begin{array}{lll}
3 & 2 & 2 \\
0 & \frac{5}{3} & \frac{2}{3} \\
0 & 0 & \frac{7}{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
4 \\
-\frac{8}{3} \\
\frac{7}{5}
\end{array}\right) \\
& x_{3}=1 \\
& x_{2}=-2 \\
& \vec{p}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
0 \\
-1
\end{array}\right){ }^{4} \\
& x_{1}=2
\end{aligned}
$$

4. (15 points) Linear Regression - Find the least squares regression line through the points $(1,1),(2,3)$, and $(4,5)$.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right) \quad \vec{b}=\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right) \\
A^{+}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right) \quad A^{+} A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right)=\left(\begin{array}{ll}
3 & 7 \\
7 & 21
\end{array}\right) \\
A^{+} \vec{b}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
5
\end{array}\right)=\binom{9}{27} \\
\left(\begin{array}{ll}
3 & 7 \\
7 & 21
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{9}{27} \quad \begin{array}{l}
7 x_{1}+21 x_{2}=27
\end{array} \quad \Rightarrow \begin{array}{l}
x_{1}=0 \\
x_{2}=\frac{9}{7}
\end{array} \\
y=\frac{9}{7} x+0
\end{gathered}
$$

5. (15 points) Orthonormal Bases - Find an orthonormal basis for the vector space

$$
\begin{aligned}
& \operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\} . \\
& \vec{A}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \\
& \left.\vec{B}=\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right)-\frac{\left(\begin{array}{lll}
1 & 2 & 0
\end{array}\right)\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right)}{(12} 0\right)\left(\begin{array}{c}
1 \\
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
0
\end{array}\right)-\frac{2}{5}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
\frac{8}{5} \\
-\frac{4}{5} \\
-2
\end{array}\right) \\
& \begin{aligned}
\vec{C} & =\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)-\frac{(120)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)}{(120)\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-\frac{\left(\frac{8}{5}-\frac{4}{5}-2\right)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)}{\left(\frac{8}{5}-\frac{4}{5}-2\right)\left(\begin{array}{c}
\frac{8}{5} \\
-\frac{4}{5} \\
-2
\end{array}\right)}\left(\begin{array}{c}
\frac{8}{5} \\
-\frac{4}{5} \\
-2
\end{array}\right) \\
& =\binom{0}{1}-\binom{\frac{2}{5}}{4}-\frac{24}{205}
\end{aligned} \\
& \begin{array}{l}
=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)-\left(\begin{array}{c}
\frac{2}{5} \\
\frac{4}{5} \\
0
\end{array}\right)+\frac{2}{3}\left(\begin{array}{c}
\frac{8}{5} \\
-\frac{4}{5} \\
-26
\end{array}\right)=\left(\begin{array}{c}
\frac{10}{15} \\
-\frac{5}{15} \\
\frac{2}{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3} \\
\frac{2}{3}
\end{array}\right) . \frac{2}{3}
\end{array} \\
& \left.\vec{q}_{1}=\frac{1}{\sqrt{5}}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \vec{q}_{2}=\frac{\sqrt{5}}{6}\left(\begin{array}{c}
\frac{8}{5} \\
-\frac{4}{5} \\
-2
\end{array}\right), \quad \vec{q}_{3}=\left(\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3} \\
\frac{2}{3}
\end{array}\right)\right)
\end{aligned}
$$

6. (8 points) Properties of Matrices - Using the three fundamental properties of the determinant (determinant of the identity is 1 , switching rows switches the sign, linearity for each row) prove that a matrix with a repeated row has determinant 0 .

If we switch the rows the matrix is unchanged, but the determinant switches sign. So,

$$
\begin{aligned}
& \operatorname{det}(A)=-\operatorname{det}(A) \\
& \Rightarrow \operatorname{det}(A)=0 \text {, }
\end{aligned}
$$

7. (15 points) Calculating Determinants - Calculate the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & -2 & 7 & 9 \\
3 & -4 & 5 & 5 \\
3 & 6 & 1 & -1 \\
4 & 5 & 3 & 2
\end{array}\right)
$$

Use elimination

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & -2 & 7 & 9 \\
3 & -4 & 5 & 5 \\
3 & 6 & 1 & -1 \\
4 & 5 & 3 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -2 & 7 & 9 \\
0 & 2 & -16 & -22 \\
0 & 12 & -20 & -28 \\
0 & 13 & -25 & -34
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
1 & -2 & 7 & 9 \\
0 & 2 & -16 & -22 \\
0 & 0 & 76 & 104 \\
0 & 0 & 79 & 109
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -2 & 7 & 9 \\
0 & 2 & -16 & -22 \\
0 & 0 & 76 & 104 \\
0 & 0 & 0 & \frac{17}{19}
\end{array}\right) \\
& \rightarrow \operatorname{det}(A)=1 \times 2 \times 76 \times\left(\frac{17}{19}\right)=1 \times 2 \times 4 \times 17 \\
& =
\end{aligned}
$$

8. (10 points) Other Ways of Calculating Determinants - Calculate the determinant of the matrix

$$
\left(\begin{array}{lll}
4 & 0 & 2 \\
2 & 3 & 1 \\
3 & 1 & 5
\end{array}\right)
$$

using a cofactor expansion along column 2.

$$
\begin{aligned}
3\left|\begin{array}{ll}
4 & 2 \\
3 & 5
\end{array}\right|-\left|\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right| & =3(14)-0 \\
& =42
\end{aligned}
$$

