Math 2270 - Practice Exam 3

University of Utah

Fall 2012

Name:
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (9 Points) The Four Subspaces

- (3 points) The rowspace is the orthogonal complement of the
- (3 points) If an $m \times n$ matrix has a d-dimensional nullspace, then its rowspace has dimension \qquad .
- (3 points) For an $m \times n$ matrix A calculate:

$$
\operatorname{dim}(\mathbf{C}(A))+\operatorname{dim}\left(\mathbf{N}\left(A^{T}\right)\right) .
$$

2. (8 points) Orthogonal Complements - Find a basis for the orthogonal complement of the vector space

$$
\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right\}
$$

3. (20 points) Projections - Find the projection of the vector \mathbf{b} onto the column space of the matrix A :

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
-1 \\
0 \\
1
\end{array}\right)
$$

4. (15 points) Linear Regression - Find the least squares regression line through the points $(1,1),(2,3)$, and $(4,5)$.
5. (15 points) Orthonormal Bases - Find an orthonormal basis for the vector space

$$
\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\} .
$$

6. (8 points) Properties of Matrices - Using the three fundamental properties of the determinant (determinant of the identity is 1 , switching rows switches the sign, linearity for each row) prove that a matrix with a repeated row has determinant 0 .
7. (15 points) Calculating Determinants - Calculate the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & -2 & 7 & 9 \\
3 & -4 & 5 & 5 \\
3 & 6 & 1 & -1 \\
4 & 5 & 3 & 2
\end{array}\right)
$$

8. (10 points) Other Ways of Calculating Determinants - Calculate the determinant of the matrix

$$
\left(\begin{array}{lll}
4 & 0 & 2 \\
2 & 3 & 1 \\
3 & 1 & 5
\end{array}\right)
$$

using a cofactor expansion along column 2.

