Math 2270 - Exam 2

University of Utah

Fall 2012

This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 Points) Subspaces

Circle the subsets below that are subspaces of \mathbb{R}^{3} :
(a) The set of all vectors $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ with $a_{3}=a_{1}+a_{2}$.
(b) $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$.
(c) The set of all vectors $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ with $a_{3} \geq a_{1}+a_{2}$.
(d) The set of all vectors $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ with $a_{3}=0$.
(e) The set of all vectors $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ with $a_{3}=1$.
2. (20 points) For the following matrix, determine the special solutions for the nullspace, provide a basis for the nullspace, and state the dimension of the nullspace.

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
3 & 6 & -5 & 4 \\
1 & 2 & 0 & 3
\end{array}\right) . \\
& \text { subtract } 3 x
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & -2 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \\
& x_{2}, x_{y} \text { free. } \\
& x_{2}=1, x_{4}=0, \quad x_{2}=0, x_{4}=1 . \\
& x_{3}=0, x_{1}=-2 \quad x_{3}=-1, x_{1}=-3 \\
& \vec{s}_{1}=\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right), \vec{s}_{2}=\left(\begin{array}{c}
-3 \\
0 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

The special solutions are a basis, and so the dimension is 2 .
3. (20 points) Calculate the rank of the following matrix, provide a basis for the column space, and state the dimension of the column space:

$$
B=\left(\begin{array}{ccccc}
1 & 0 & -2 & 1 & 0 \\
0 & -1 & -3 & 1 & 3 \\
-2 & -1 & 1 & -1 & 3 \\
0 & 3 & 9 & 0 & -12
\end{array}\right)
$$

$$
\xrightarrow{\begin{array}{l}
\text { Multiply row } \\
\text { by } \\
-1 \\
\text { by a and row } \frac{1}{3}
\end{array}}\left(\begin{array}{ccccc}
(1) & 0 & -2 & 1 & 0 \\
0 & 1 & 3 & -1 & -3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)
$$

3 pivots, so $\operatorname{rank}(B)=3$.
Basis for column space:

$$
\left(\begin{array}{r}
1 \\
0 \\
-2 \\
0
\end{array}\right),\left(\begin{array}{r}
0 \\
-1 \\
-1 \\
3
\end{array}\right),\left(\begin{array}{r}
1 \\
1 \\
-1 \\
0
\end{array}\right)
$$

Dimension of column space is 3.
4. (10 points) For an 8×11 matrix A of rank 5 what are:

- $\operatorname{dim}(\mathbf{C}(A))=5$
- $\operatorname{dim}\left(\mathbf{C}\left(A^{T}\right)\right)=5$
- $\operatorname{dim}(\mathbf{N}(A))=11-5=6$
- $\operatorname{dim}\left(\mathbf{N}\left(A^{T}\right)\right)=8-5=3$

Subtract

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
1 & 0 & -2 & 1 & 5 \\
3 & 1 & -5 & 0 & 8 \\
1 & 2 & 0 & -5 & -9
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
5 \\
8 \\
-9
\end{array}\right) . \\
\left(\begin{array}{cccccc}
1 & 0 & -2 & 1 & 5 & 5 \\
3 & 1 & -5 & 0 & 8 & 8 \\
1 & 2 & 0 & -5 & -9 & -9
\end{array}\right) \xrightarrow{\begin{array}{c}
\text { Subtract } 3 x \\
\text { round from from r au } \\
\text { and }
\end{array}}\left(\begin{array}{cccccc}
1 & 0 & -2 & 1 & 5 & 5 \\
0 & 1 & 1 & -3 & -7 & -7 \\
0 & 2 & 2 & -6 & -14 & -14
\end{array}\right)
\end{gathered}
$$

$$
\xrightarrow{\begin{array}{c}
2 x \text { row } 2 \text { from } \\
\text { row } 3
\end{array}}\left(\begin{array}{cccccc}
1 & 0 & -2 & 1 & 5 & 5 \\
0 & 1 & 1 & -3 & -7 & -7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Last column is free, so solution exist r.

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 0 & -2 & 1 & 5 \\
0 & 1 & 1 & -3 & -7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
5 \\
-7 \\
0
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 0 & -2 & 1 \\
5 \\
0 & 1 & 1 & -3
\end{array}-7\right. \\
& 0
\end{aligned} 0
$$

$$
\begin{aligned}
& x_{3}=1, x_{4}=0, x_{5}=0 \\
& x_{2}=-1, x_{1}=1 \\
& x_{3}=0, x_{4}=1, x_{5}=0 \\
& x_{2}=3, x_{1}=-1 \\
& x_{3}=0, x_{4}=0, x_{5}=1 \\
& x_{2}=7, x_{1}=-5
\end{aligned}
$$

Total solution:
6. (10 points) For what value b_{3} does the following equation have a solution? (Don't worry about providing the solution, just give the necessary value of b_{3}.)

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
3 & 3 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
5 \\
b_{3}
\end{array}\right) . \\
& \left.\left(\begin{array}{llll}
1 & 2 & 3 & 2 \\
2 & 1 & 2 & 5 \\
3 & 3 & 5 & b_{3}
\end{array}\right) \begin{array}{c}
\begin{array}{c}
\text { subtract } 2 x \\
\text { from row row and } 3 x \\
\text { row from row } 3
\end{array}
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0-3 & -4 & 1 \\
0-3 & -4 & b_{3}-6
\end{array}\right) \\
& \text { Subtract } \\
& \left.\begin{array}{l}
\left.\begin{array}{l}
\text { abstract } \\
\text { row } 2 \text { from } \\
\text { row } 3
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & -3 & -4 & 1 \\
0 & 0 & 0 & b_{3}
\end{array}\right)(7) ~
\end{array}\right) \\
& \text { Must have } \\
& b_{3}=7
\end{aligned}
$$

7. (10 points extra credit) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for a vector space \mathbf{V} prove that every vector $\mathbf{v} \in \mathbf{V}$ can be expressed uniquely as a linear combination of the given basis vectors.
$\vec{V}_{1}, \ldots, \vec{V}_{n}$ are a basis for \vec{V} so every vector in \vec{V} can be written as

$$
\vec{V}=c_{1} \vec{V}_{1}+\cdots+c_{n} \stackrel{\rightharpoonup}{V}_{n}
$$

Suppose

$$
\vec{V}=c_{1}^{\prime} \vec{V}_{1}+\cdots+c_{n}^{\prime} \vec{V}_{n}
$$

then

$$
\overrightarrow{0}=\vec{v}-\vec{v}=\left(c_{1}-c_{1}^{\prime}\right) \stackrel{\rightharpoonup}{v}_{1}+\cdots+\left(c_{n}-c_{n}^{\prime}\right) \vec{v}_{n}
$$

As the vectors $\vec{V}_{1}, \ldots, \vec{V}_{n}$ are linearly independent we must have

$$
c_{1}-c_{1}^{\prime}=c_{2}-c_{2}^{\prime}=\cdots=c_{n}-c_{n}^{\prime}=0 .
$$

So, $C_{1}=C_{1}^{\prime}, C_{2}=C_{2}^{\prime}, \ldots, C_{n}=C_{n}^{\prime}$!
Thus, the representation is unique.

