Math 2270 - Practice Exam 2

University of Utah

Fall 2012

This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 Points) Subspaces

For the following subsets of \mathbb{R}^{n} explain why they are or are not subspaces of \mathbb{R}^{n} :
(a) The set of all linear combinations of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.
(b) The set of all vectors with first component equal to 2 .
(c) The set of all vectors with first component equal to 0 .
a) Subspace:

Closed under addition $=$

$$
\begin{aligned}
& \left(c_{1} \vec{v}+c_{2} \vec{w}\right)+\left(d_{1} \vec{v}+d_{2} \vec{w}\right) \\
& =\left(c_{1}+d_{1}\right) \vec{v}+\left(c_{2}+d_{2}\right) \vec{w}
\end{aligned}
$$

Closed under scalar multiplication

$$
k\left(c_{1} \vec{v}+a_{2} \vec{w}\right)=k c_{1} \vec{v}+k c_{2} \vec{w}
$$

b) Not a subspace. Not closed under addition:

$$
\binom{2}{5}+\binom{2}{3}=\binom{4}{8}
$$

c) Sabspare:

$$
\begin{aligned}
& \binom{0}{\vdots}+\left(\begin{array}{l}
0 \\
\vdots \\
\vdots
\end{array}\right)=\binom{0}{\vdots} \text { closed under addition } \\
& k\binom{0}{\vdots}=\left(\begin{array}{c}
0 \\
k \\
k \\
k
\end{array}\right) \text { closed under multiplication }
\end{aligned}
$$

2. (20 points) For the following matrix, determine the special solutions for the nullspace, calculate the nullspace, and give its dimension.

Subtract

$$
A=\left(\begin{array}{cccc}
1 & 2 & 2 & 4 \\
3 & 8 & 6 & 16
\end{array}\right)
$$

$$
\begin{aligned}
& \substack{\text { Subtract } \\
\begin{array}{c}
3 x \text { row } 1 \\
\text { from rove } \\
\hline
\end{array}\left(\begin{array}{llll}
1 & 2 & 2 & 4 \\
0 & 2 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{y}
\end{array}\right) \\
\text { ecial solution } 1 \text { : }}
\end{aligned}
$$

Special solution 1:

$$
\begin{array}{ll}
x_{3}=1 \\
x_{4}=0 \\
x_{2}=0 \\
x_{1}=-2
\end{array} \quad \overrightarrow{s_{1}}=\left(\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right) \quad \begin{gathered}
x_{3}=0 \\
x_{4}=1 \\
x_{2}=-2 \\
x_{1}=0
\end{gathered} \quad \vec{s}_{2}=\left(\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right)
$$

Special solution 2 :
3. (20 points) Fou the following matrix, calculate the rank, determine the dimension of the column space, and provide a basis for the colun space:

$$
\begin{aligned}
& B=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 4
\end{array}\right) . \\
& \text { Subtract } \\
& \text { row } 1 \text { from } \\
& B \xrightarrow{\text { fowl from }}\left(\begin{array}{lll}
1 & 2 & 3 \\
10 & 0 & 1
\end{array}\right) \\
& 2 \text { pilots } \Rightarrow \text { rank 2 } \\
& \text { dimension of column } \\
& \text { pivots } \\
& \text { Basis: }\binom{1}{1},\binom{3}{4}
\end{aligned}
$$

The columns that become the pivot columns are a basis.
4. (15 points) Calculate the dimension, and find a basis for, the vector space given by:

$$
\begin{aligned}
& \operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)\right\} . \\
& 2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)
\end{aligned}
$$

$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ are linearly independent.
So, there are 2 basis vectors:

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)_{1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

and the dimension is 2 .
5. (30 points) Calculate the complete solution $A \mathbf{x}=\mathbf{b}$ for the following:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 3 & 3 \\
2 & 6 & 9 \\
-1 & -3 & 3
\end{array}\right) \\
& \mathbf{b}=\left(\begin{array}{l}
1 \\
5 \\
5
\end{array}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Subtract }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 3 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 3 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& x_{2}=0 \\
& x_{3}=1 \quad \vec{x}_{p}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \\
& x_{1}=-2 \\
& x_{3}=0 \\
& x_{1}=-3
\end{aligned}
$$

$$
\left.\vec{x}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)\right]_{6} \mathbb{R} \text { complete solution. }
$$

