Math 2270 - Practice Exam 2

University of Utah

Fall 2012

Name:
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 Points) Subspaces

For the following subsets of \mathbb{R}^{n} explain why they are or are not subspaces of \mathbb{R}^{n} :
(a) The set of all linear combinations of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.
(b) The set of all vectors with first component equal to 2 .
(c) The set of all vectors with first component equal to 0 .
2. (20 points) For the following matrix, determine the special solutions for the nullspace, calculate the nullspace, and give its dimension.

$$
A=\left(\begin{array}{cccc}
1 & 2 & 2 & 4 \\
3 & 8 & 6 & 16
\end{array}\right)
$$

3. (20 points) Fow the following matrix, calculate the rank, determine the dimension of the column space, and provide a basis for the column space:

$$
B=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 4
\end{array}\right)
$$

4. (15 points) Calculate the dimension, and find a basis for, the vector space given by:

$$
\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)\right\} .
$$

5. (30 points) Calculate the complete solution $A \mathbf{x}=\mathbf{b}$ for the following:

$$
A=\left(\begin{array}{ccc}
1 & 3 & 3 \\
2 & 6 & 9 \\
-1 & -3 & 3
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
5 \\
5
\end{array}\right)
$$

