Math 2270 - Exam 2

University of Utah

Fall 2012

Name: _____

This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 Points) Subspaces

Circle the subsets below that are subspaces of \mathbb{R}^3 :

(a) The set of all vectors
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 with $a_3 = a_1 + a_2$.
(b) $span\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$.
(c) The set of all vectors $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ with $a_3 \ge a_1 + a_2$.
(d) The set of all vectors $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ with $a_3 = 0$.
(e) The set of all vectors $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ with $a_3 = 1$.

2. (20 points) For the following matrix, determine the special solutions for the nullspace, provide a basis for the nullspace, and state the dimension of the nullspace.

$$A = \left(\begin{array}{rrrr} 1 & 2 & -2 & 1 \\ 3 & 6 & -5 & 4 \\ 1 & 2 & 0 & 3 \end{array}\right).$$

3. (20 points) Calculate the rank of the following matrix, provide a basis for the column space, and state the dimension of the column space:

$$B = \begin{pmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & -1 & -3 & 1 & 3 \\ -2 & -1 & 1 & -1 & 3 \\ 0 & 3 & 9 & 0 & -12 \end{pmatrix}.$$

- 4. (10 points) For an 8×11 matrix A of rank 5 what are:
 - $dim(\mathbf{C}(A)) =$
 - $dim(\mathbf{C}(A^T)) =$
 - $dim(\mathbf{N}(A)) =$
 - $dim(\mathbf{N}(A^T)) =$

5. (25 points) Calculate the complete solution $A\mathbf{x} = \mathbf{b}$ for the following:

$$A = \begin{pmatrix} 1 & 0 & -2 & 1 & 5 \\ 3 & 1 & -5 & 0 & 8 \\ 1 & 2 & 0 & -5 & -9 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 5 \\ 8 \\ -9 \end{pmatrix}.$$

6. (10 points) For what value b_3 does the following equation have a solution? (Don't worry about providing the solution, just give the necessary value of b_3 .)

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 3 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ b_3 \end{pmatrix}.$$

7. (10 points extra credit) If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is a basis for a vector space \mathbf{V} prove that every vector $\mathbf{v} \in \mathbf{V}$ can be expressed *uniquely* as a linear combination of the given basis vectors.