Math 2270 - Exam 1

University of Utah

Fall 2012

This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 points) Vector Basics

For the vectors

$$
\mathbf{a}=\left(\begin{array}{c}
2 \\
1 \\
4
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

answer the following, or explain why the question does not make sense:
(a) (3 points) $2 \mathbf{a}+3 \mathbf{c}=$
$2\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)+3\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{l}4 \\ 2 \\ 8\end{array}\right)+\left(\begin{array}{l}3 \\ 6 \\ 9\end{array}\right)=\left(\begin{array}{l}7 \\ 8 \\ 17\end{array}\right)$

$$
\mathbf{a}=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(b) (3 points) $\|\mathbf{a}\|=$

$$
\begin{aligned}
&\|\vec{a}\|= \sqrt{2^{2}+1^{2}+4^{2}}=\sqrt{4+1+16} \\
&=\sqrt{21}
\end{aligned}
$$

(c) (2 points) What are the components of a unit vector in the same direction as a?

$$
\hat{a}=\left(\begin{array}{l}
\frac{2}{\sqrt{21}} \\
\frac{1}{\sqrt{21}} \\
\frac{4}{\sqrt{21}}
\end{array}\right)
$$

$$
\mathbf{a}=\left(\begin{array}{c}
2 \\
1 \\
4
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right)
$$

(d) (4 points) $\mathbf{b} \cdot \mathbf{c}=$

$$
1 \cdot 1+1-2+1-3=6
$$

(e) $(3$ points) $\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}=$

Does not make sense.

$$
(\vec{a}-\vec{b}) \text { 1) a scalar, and }
$$

the dot product of a scalar and a vector does not make sense.
2. (10 points) Matrix Basics

For the matrices

$$
A=\left(\begin{array}{ccc}
3 & 4 & 2 \\
2 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
2 & 1 & 5 \\
4 & 4 & 2 \\
1 & 0 & 2
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

answer the following, or explain why the question does not make sense:
(a) (3 points) $A+C=$

$$
\left(\begin{array}{lll}
3 & 4 & 2 \\
2 & 1 & 1
\end{array}\right)+\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
=\left(\begin{array}{lll}
4 & 5 & 3 \\
2 & 1 & 1
\end{array}\right)
$$

$$
A=\left(\begin{array}{lll}
3 & 4 & 2 \\
2 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
2 & 1 & 5 \\
4 & 4 & 2 \\
1 & 0 & 2
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(b) (4 points) $C B=$

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 5 \\
4 & 4 & 2 \\
1 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
7 & 5 & 9 \\
0 & 0 & 0
\end{array}\right)
$$

(c) (3 points) $B C=$

Does not make sense.
\# columns of $B \neq \#$ rows of C.
3. (15 points) Elimination Issues
(a) (5 points) For what value of a in the system of equations below does elimination fail to produce a unique solution?

$$
\begin{aligned}
& 3 x+2 y=10 \\
& 6 x+a y=b
\end{aligned}
$$

If $a=4$ elimination makes all the coefficients in row 2 on the left 0 .

$$
0 x+0 y=b-20
$$

(b) (5 points) Given the determined value of a, for what value of b are there an infinite number of solutions?

If $b=20$ elimination gives

$$
0 x+0 y=0
$$

which is always true.
(c) (5 points) For the determined values of a and b what are two distinct solutions?

$$
\begin{aligned}
& x=2, y=2 \\
& x=0, y=5
\end{aligned}
$$

There are, of course, many other possibilities.
4. (20 points) Systems of Equations

Use elementary row operations to convert the system of equations

$$
\begin{aligned}
2 x+3 y+3 z & =3 \\
6 x+6 y+12 z & =13 \\
12 x+9 y-z & =2
\end{aligned}
$$

into upper-triangular form, and then use back-substitution to solve for the variables x, y, z. Be sure to show all your work.
Subtract $3 x$ row 1 from row 2

$$
\begin{aligned}
& 2 x+3 y+3 z=3 \\
& 0 x-3 y+3 z=4 \\
& 12 x+9 y-z=2
\end{aligned}
$$

Subtract $6 x$ row 1 from row $\}$

$$
\begin{aligned}
2 x+3 y+3 z & =3 \\
-3 y+3 z & =4 \\
-9 y-19 z & =-16
\end{aligned}
$$

Subtract $3 x$ row 2 from rows

$$
\begin{aligned}
2 x+3 y & +3 z=3 \\
-3 y & +3 z=4 \\
-28 z & =-28
\end{aligned} \quad \text { uppertrian qu lar form }
$$

$$
\begin{aligned}
& z=1 \\
& y=-\frac{1}{3} \\
& y=\frac{1}{2}
\end{aligned}
$$

5. (15 points) Inverting a Matrix

Find the inverse of the matrix

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 1 & 1 \\
3 & 5 & 4 \\
3 & 6 & 5
\end{array}\right) \\
& \left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
3 & 5 & 4 & 0 & 1 & 0 \\
3 & 6 & 5 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & -3 & 1 & 0 \\
0 & 3 & 2 & -3 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & -3 & 1 & 0 \\
0 & 0 & \frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 1 & 0 & -2 & 3 & -2 \\
0 & 2 & 0 & -6 & 4 & -2 \\
0 & 0 & \frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & -1 \\
0 & 2 & 0 & -6 & 4 & -2 \\
0 & 0 & \frac{1}{2} & \frac{3}{2} & -\frac{3}{2} & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & -1 \\
0 & 1 & 0 & -3 & 2 & -1 \\
0 & 0 & 1 & 3 & -3 & 2
\end{array}\right) \\
& A^{-1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
-3 & 2 & -1 \\
3 & -3 & 2
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 1 & -1 \\
-3 & 2 & -1 \\
3 & -3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
3 & 5 & 4 \\
3 & 6 & 5
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

6. (15 points) $L D U$ Decomposition

Find the $L D U$ decomposition of the matrix

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 2 & 2 \\
3 & 7 & 9 \\
-1 & -4 & -7
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 2 \\
3 & 7 & 9 \\
-1 & -4 & -7
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & 3 \\
-1 & -4 & -7
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & \phi
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & 3 \\
-1 & -4 & -7
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & 3 \\
0 & -2 & -9
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & 3 \\
0 & -2 & -5
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)=U \\
& E^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
-1 & -2 & 1
\end{array}\right)=L \\
& \left(\begin{array}{ccc}
1 & 2 & 2 \\
3 & 7 & 9 \\
-1 & -4 & -7
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
-1 & -2 & 1 \\
9
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

7. (10 points) Symmetric Products For the matrix

$$
R=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 0
\end{array}\right)
$$

(a) (4 points) What is the transpose R^{T} ?

$$
R^{\top}=\left(\begin{array}{ll}
1 & 2 \\
2 & 2 \\
3 & 0
\end{array}\right)
$$

(b) (4 points) What is the symmetric product $R^{T} R$

$$
\left.\left(\begin{array}{ll}
12 \\
2 & 2 \\
3 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 3 \\
2 & 4 & 0
\end{array}\right)=\left[\begin{array}{ccc}
5 & 10 & 3 \\
10 & 20 & 6 \\
3 & 6 & 9
\end{array}\right)\right]
$$

(c) (2 points) Does $R^{T} R=R R^{T}$?

$$
\begin{aligned}
& \text { No. They're not even the same } \\
& \text { size. }
\end{aligned}
$$

