Math 2270 - Practice Exam 1

University of Utah

Fall 2012

Name:

1. (25 points) Vector Basics

For the vectors

$$
\mathbf{a}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

$\mathbf{b}=\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)$
$\mathbf{c}=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$
answer the following:
(a) (3 points) $\mathbf{a}+\mathbf{b}=$

$$
\mathbf{a}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
4 \\
6
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{c}
2 \\
1 \\
2
\end{array}\right)
$$

(b) $(3$ points) $2 \mathbf{a}=$
(c) (5 points) $\|\mathbf{c}\|=$

$$
\mathbf{a}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
4 \\
6
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{c}
2 \\
1 \\
2
\end{array}\right)
$$

(d) (5 points) $\mathbf{a} \cdot \mathbf{b}=$
(e) (5 points) Give the components of a unit vector in the same direction as \mathbf{b}.

$$
\mathbf{a}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
4 \\
6
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{c}
2 \\
1 \\
2
\end{array}\right)
$$

(f) (4 points) Do the three vectors span a line, a plane, or all of \mathbb{R}^{3} ?

2. (15 points) Matrix Basics

For the matrices

$$
A=\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 3 & 4 \\
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right) \quad C=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 3 & 0
\end{array}\right)
$$

answer the following
(a) (3 points) $A+B=$

$$
A=\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 3 & 4 \\
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 3 & 0
\end{array}\right)
$$

(b) (3 points) $A+C=$
(c) (3 points) $A C=$

$$
A=\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 3 & 4 \\
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 3 & 0
\end{array}\right)
$$

(d) (3 points) $A B=$
(e) (3 points) $B A=$
3. (20 points) Systems of Equations

Use elementary row operations to convert the system of equations

$$
\begin{aligned}
x-2 y+3 z & =9 \\
-x+3 y & =-4 \\
2 x-5 y+5 z & =17
\end{aligned}
$$

into upper-triangular form, and then use back-substitution to solve for the variables x, y, z. Be sure to show all your work.
4. (20 points) Matrix Form and Inverses

Write the system of linear equations from the last problem

$$
\begin{aligned}
x-2 y+3 z & =9 \\
-x+3 y & =-4 \\
2 x-5 y+5 z & =17
\end{aligned}
$$

in matrix form, and fine the inverse of the coefficient matrix.

5. (20 points) $L U$ Decomposition

Find the LU decomposition of the coefficient matrix for the system of linear equations

$$
\begin{aligned}
x-2 y+3 z & =9 \\
& =-4 \\
-x+3 y-5 y+5 z & =17
\end{aligned}
$$

