Math 2270 - Exam 1

University of Utah

Fall 2012

Name:

\qquad
This is a 50 minute exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (15 points) Vector Basics

For the vectors

$$
\mathbf{a}=\left(\begin{array}{c}
2 \\
1 \\
4
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right)
$$

answer the following, or explain why the question does not make sense:
(a) (3 points) $2 \mathbf{a}+3 \mathbf{c}=$

$$
\mathbf{a}=\left(\begin{array}{c}
2 \\
1 \\
4
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(b) (3 points) $|\mid \mathbf{a} \|=$
(c) (2 points) What are the components of a unit vector in the same direction as a?

$$
\mathbf{a}=\left(\begin{array}{c}
2 \\
1 \\
4
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{c}=\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right)
$$

(d) (4 points) $\mathbf{b} \cdot \mathbf{c}=$
(e) (3 points) $\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}=$
2. (10 points) Matrix Basics

For the matrices

$$
A=\left(\begin{array}{ccc}
3 & 4 & 2 \\
2 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
2 & 1 & 5 \\
4 & 4 & 2 \\
1 & 0 & 2
\end{array}\right) \quad C=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

answer the following, or explain why the question does not make sense:
(a) (3 points) $A+C=$

$$
A=\left(\begin{array}{ccc}
3 & 4 & 2 \\
2 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
2 & 1 & 5 \\
4 & 4 & 2 \\
1 & 0 & 2
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(b) (4 points) $C B=$
(c) (3 points) $B C=$
3. (15 points) Elimination Issues
(a) (5 points) For what value of a in the system of equations below does elimination fail to produce a unique solution?

$$
\begin{aligned}
& 3 x+2 y=10 \\
& 6 x+a y=b
\end{aligned}
$$

(b) (5 points) Given the determined value of a, for what value of b are there an infinite number of solutions?
(c) (5 points) For the determined values of a and b what are two distinct solutions?
4. (20 points) Systems of Equations

Use elementary row operations to convert the system of equations

$$
\begin{aligned}
2 x+3 y+3 z & =3 \\
6 x+6 y+12 z & =13 \\
12 x+9 y-z & =2
\end{aligned}
$$

into upper-triangular form, and then use back-substitution to solve for the variables x, y, z. Be sure to show all your work.
5. (15 points) Inverting a Matrix

Find the inverse of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
3 & 5 & 4 \\
3 & 6 & 5
\end{array}\right)
$$

6. (15 points) LDU Decomposition

Find the $L D U$ decomposition of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 2 \\
3 & 7 & 9 \\
-1 & -4 & -7
\end{array}\right)
$$

7. (10 points) Symmetric Products

For the matrix

$$
R=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 0
\end{array}\right)
$$

(a) (4 points) What is the transpose R^{T} ?
(b) (4 points) What is the symmetric product $R^{T} R$
(c) (2 points) Does $R^{T} R=R R^{T}$?

