Math 2270 - Assignment 9

Dylan Zwick

Fall 2012

Section 4.3-1, 3, 9, 10, 12
Section 4.4-2, 6, 11, 18, 21
Section 5.1 -1, 3, 8, 13, 24

4.3- Least Squares Approximation

4.3.1 With $b=0,8,8,20$ at $t=0,1,3,4$, set up and solve the normal equations $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. For the best straight line find its four heights p_{i} and four errors e_{i}. What is the minimum value $E=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$?
4.3.3 Check that $\mathbf{e}=\mathbf{b}-\mathbf{p}=(-1,3,-5,3)$ is perpendicular to both columns of A. What is the shortest distance $\|\mathbf{e}\|$ from \mathbf{b} to the column space of A ?
4.3.9 For the closest parabola $b=C+D t+E t^{2}$ to the same four points, write down the unsolvable equations $A \mathbf{x}=\mathbf{b}$ in three unknowns (C, D, E). Set up the three normal equations $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ (solution not required).
4.3.10 For the closest cubic $b=C+D t+E t^{2}+F t^{3}$ to the same four points, write down the four equations $A \mathbf{x}=\mathbf{b}$. Solve them by elimination. What are \mathbf{p} and \mathbf{e} ?
4.3.12 (Recommended) This problem projects $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$ onto the line through $\mathbf{a}=(1, \ldots, 1)$. We solve m equations $\mathbf{a} x=\mathbf{b}$ in 1 unknown (by least squares).
(a) Solve $\mathbf{a}^{T} \mathbf{a} \hat{x}=\mathbf{a}^{T} \mathbf{b}$ to show that \hat{x} is the mean (the average) of the b's.
(b) Find $\mathbf{e}=\mathbf{b}-\mathbf{a} \hat{x}$ and the variance $\|\mathbf{e}\|^{2}$ and the standard deviation $\|\mathbf{e}\|$.
(c) The horizontal line $\hat{\mathbf{b}}=(3,3,3)$ is closest to $\mathbf{b}=(1,2,6)$. Check that $\mathbf{p}=(3,3,3)$ is perpendicular to \mathbf{e} and find the 3 by 3 projection matrix P.

4.4-Orthogonal Bases and Gram-Schmidt

4.4.2 The vectors $(2,2,-1)$ and $(-1,2,2)$ are orthogonal. Divide them by their lengths to find orthonormal vectors \mathbf{q}_{1} and \mathbf{q}_{2}. Put those into the columns of Q and multiply $Q^{T} Q$ and $Q Q^{T}$.
4.4.6 If Q_{1} and Q_{2} are orthogonal matrices, show that their product $Q_{1} Q_{2}$ is also an orthogonal matrix. (Use $Q^{T} Q=I$.)
4.4.11 (a) Gram-Schmidt: Find orthonormal vectors \mathbf{q}_{1} and \mathbf{q}_{2} in the plane spanned by $\mathbf{a}=(1,3,4,5,7)$ and $\mathbf{b}=(-6,6,8,0,8)$.
(b) Which vector in this plane is closest to $(1,0,0,0,0)$?
4.4.18 (Recommended) Find orthogonal vectors A, B, C by Gram-Schmidt from $\mathbf{a}, \mathbf{b}, \mathbf{c}$:

$$
\mathbf{a}=(1,-1,0,0) \quad \mathbf{b}=(0,1,-1,0) \quad \mathbf{c}=(0,0,1,-1)
$$

4.4.21 Find an orthonormal basis for the column space of A :

$$
A=\left(\begin{array}{cc}
1 & -2 \\
1 & 0 \\
1 & 1 \\
1 & 3
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
-4 \\
-3 \\
3 \\
0
\end{array}\right)
$$

Then compute the projection of \mathbf{b} onto that column space.

5.1 - The Properties of Determinants

5.1.1 If a 4×4 matrix has $\operatorname{det}(A)=\frac{1}{2}$, find $\operatorname{det}(2 A)$ and $\operatorname{det}(-A)$ and $\operatorname{det}\left(A^{-1}\right)$.
5.1.3 True of false, with a reason if true and a counterexample if false:
(a) The determinant of $I+A$ is $1+\operatorname{det}(A)$.
(b) The determinant of $A B C$ is $|A||B||C|$.
(c) The determinant of $4 A$ is $4|A|$.
(d) The determinant of $A B-B A$ is zero. Try an example with $A=$ $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
5.1.8 Prove that every orthogonal matrix $\left(Q^{T} Q=I\right)$ has determinant 1 or -1 .
(a) Use the product rule $|A B|=|A||B|$ and the transpose rule $|Q|=$ $\left|Q^{T}\right|$.
(b) Use only the product rule. If $|\operatorname{det}(Q)|>1$ then $\operatorname{det}\left(Q^{n}\right)=\operatorname{det}(Q)^{n}$ blows up. How do you know this can't happen to Q^{n} ?
5.1.13 Reduce A to U and find $\operatorname{det}(A)=$ product of the pivots:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right) \quad A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 3 \\
3 & 3 & 3
\end{array}\right)
$$

5.1.24 Elimination reduces A to U. Then $A=L U$:

$$
A=\left(\begin{array}{ccc}
3 & 3 & 4 \\
6 & 8 & 7 \\
-3 & 5 & -9
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & 3 & 4 \\
0 & 2 & -1 \\
0 & 0 & -1
\end{array}\right)=L U
$$

Find the determinants of $L, U, A, U^{-1} L^{-1}$, and $U^{-1} L^{-1} A$.

