
Math 2270 - Assignment 8

Dylan Zwick

Fall 2012

Section 4.1 - 6, 7, 9, 21, 24
Section 4.2 - 1, 11, 12, 13, 17
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4.1 - Orthogonality of the Four Subspaces

4.1.6 The system of equations Ax = b has no solution (they lead to 0 1):

x + 2y + 2z = 5
2x + 2y + 3z = 5
3x + 4y + 5z = 9

Find numbers Yi, Y2, y3 to multiply the equations so they add toO = 1.
You have found a vector y in which subspace? Its dot product yTb is
1, so no solution x.
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4.1.7 Every system with no solution is like the one in Problem 4.1.6. There
are numbers Yh. Ym that multiply the ‘in equations so they add up
to 0 = 1. This is called Frendholm’s Alternative:

Exactly one of these problems has a solution

Ax = b OR ATy 0 with yTb = 1.

If b is not in the column space of A, it is not orthogonal to the nullspace
of AT. Multiply the equations x — = 1 and x2 — = 1 and

— = 1 by numbers yi, Y2, y3 chosen so that the equations add up
to 0 = 1.
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4.1.9 If ATAx = 0 then Ax = 0. Reason: Ax is in the nulispace of AT and
also in the c lam ae of A and those spaces are cvii7oycl1( 1.
Conclusion: ATA has the same nullspace as A. This key fact is repeated in
the next section.
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Suppose S is spanned by the vectors (1,2,2,3) and (1,3,3,2). Find
two vectors that span S. This is the same as solving Ax = 0 for
which A?
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4.1.24 Suppose an n by n matrix is invertible: AA’ = I. Then the first
column of A’ is orthogonal to the space spanned by which rows of
A?
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4.2 - Projections

4.2.1 Project the vector b onto the line through a. Check that e is perpen
dicular to a:
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4.2.11 Project b onto the column space of A by solving ATA* = ATb and
p=Ax:

(a)A
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= oi) and b=(3)
o 0 4j

(b)A
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= ii) and b=(\4)
o i 6J

Find e = b
—

p. It should be perpendicular to the columns of A.
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2Compute the projection matrices Pi and P2 onto the column spaces
Problem 4.2.11. Verify that P1b gives the first projection p1. Also

verify P = P2.
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4.2.13 (Quick and Recommended) Suppose A is the 4 by 4 identity matrix
with its last column removed. A is 4 by 3. Project b = (1, 2, 3, 4) onto
the column space of A. What shape is the projection matrix P and
what is P?
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