Math 2270 - Assignment 8
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Section4.1-6,7,9,21,24
Section4.2-1,11,12,13,17



4.1 - Orthogonality of the Four Subspaces

4.1.6 The system of equations Ax = b has no solution (they lead to 0 = 1):

T + 2y + 22 =5
2r + 2y + 3z = 5
3r + 4y + 52 = 9

Find numbers y1, ¥2, y3 to multiply the equations so they add to 0 = 1.
You have found a vector y in which subspace? Its dot product y”b is
1, so no solution x.
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4.1.7 Every system with no solution is like the one in Problem 4.1.6. There
are numbers v, . . . , Ym that multiply the m equations so they add up
to 0 = 1. This is called Frendholm’s Alternative:

Exactly one of these problems has a solution

Ax=b OR ATy=0 with y'b=1.
If b is not in the column space of 4, it is not orthogonal to the nullspace
of AT. Multiply the equations z; — z, = 1 and z; — z3 = 1 and

z; — z3 = 1 by numbers y, 2, ¥3 chosen so that the equations add up
to0=1.
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4.1.9 If AT Ax = 0 then Ax = 0. Reason: Ax is in the nullspace of AT and
also in the tolumn e of A and those spaces are _0/4#o onet (.
Conclusion: AT A has the same nullspace as A. This key fact is repeated in
the next section.




Suppose S is spanned by the vectors (1,2,2,3) and (1, 3, 3,2). Find
two vectors that span S*. This is the same as solving Ax = 0 for

which A?
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4.1.24 Suppose an n by n matrix is invertible: AA~! = I. Then the first
column of A~ is orthogonal to the space spanned by which rows of
A?
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4.2 - Projections

4.2.1 Project the vector b onto the line through a. Check that e is perpen-
dicular to a:
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4.2.11 Project b onto the column space of A4 by solving ATAx = ATb and
p = Ax:
) and b= ( )

(a) A= (
Find e = b — p. It should be perpendicular to the columns of A.
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ompute the projection matrices P, and P, onto the column spaces
in Problem 4.2.11. Verify that P,b gives the first projection p,. Also

" verify P2 = P,
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4.2.13 (Quick and Recommended) Suppose A is the 4 by 4 identity matrix
with its last column removed. A is 4 by 3. Project b = (1, 2, 3,4) onto
the column space of A. What shape is the projection matrix P and

what is P?
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4.2.17 (Important) If P?2 = P show that (I — P)®> = I — P. When P projects
onto the column space of A4, I — P projects onto the | et ﬂu//;pa{e
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