Math 2270 - Assignment 8

Dylan Zwick

Fall 2012

Section 4.1 - 6, 7, 9, 21, 24 **Section 4.2** - 1, 11, 12, 13, 17

4.1 - Orthogonality of the Four Subspaces

4.1.6 The system of equations $A\mathbf{x} = \mathbf{b}$ has *no solution* (they lead to 0 = 1):

Find numbers y_1 , y_2 , y_3 to multiply the equations so they add to 0 = 1. You have found a vector **y** in which subspace? Its dot product $\mathbf{y}^T \mathbf{b}$ is 1, so no solution **x**.

$$(x+2y+2z) + (2x+ly+3z) - (3x+4y+5z) = 0$$

$$s + S - 9 = 1$$

$$s_{0}, \quad \vec{y} = \begin{pmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$\vec{y} \quad is \quad in \quad the \quad left-nullspace \quad \vec{N}(A^{\dagger}).$$

4.1.7 Every system with no solution is like the one in Problem 4.1.6. There are numbers y_1, \ldots, y_m that multiply the *m* equations so they add up to 0 = 1. This is called **Frendholm's Alternative**:

Exactly one of these problems has a solution

 $A\mathbf{x} = \mathbf{b}$ OR $A^T\mathbf{y} = \mathbf{0}$ with $\mathbf{y}^T\mathbf{b} = 1$.

If **b** is not in the column space of *A*, it is not orthogonal to the nullspace of A^T . Multiply the equations $x_1 - x_2 = 1$ and $x_2 - x_3 = 1$ and $x_1 - x_3 = 1$ by numbers y_1, y_2, y_3 chosen so that the equations add up to 0 = 1.

$$(x_{1} - x_{2}) + (x_{2} - x_{3}) - (x_{1} - x_{3}) = 0$$

$$| + | -| = |.$$

$$50, \quad y_{1} = |, \quad y_{2} = |, \quad y_{3} = -i.$$

$$\vec{y}_{1} = \begin{pmatrix} 1 \\ -i \end{pmatrix}.$$

4.1.9 If $A^T A \mathbf{x} = \mathbf{0}$ then $A \mathbf{x} = \mathbf{0}$. Reason: $A \mathbf{x}$ is in the nullspace of A^T and also in the <u>column</u> page of A and those spaces are <u>orthogonal</u>. Conclusion: $A^T A$ has the same nullspace as A. This key fact is repeated in the next section.

4.1.21 Suppose **S** is spanned by the vectors (1, 2, 2, 3) and (1, 3, 3, 2). Find two vectors that span **S**^{\perp}. This is the same as solving A**x** = **0** for which *A*?

$$A = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 2 & 3 \\ 0 & 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \begin{array}{c} x_3 = 1 \\ x_4 = 0 \end{array} \Rightarrow \begin{array}{c} x_2 = -1 \\ x_1 = 0 \end{array}$$

$$\overrightarrow{s}_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{array}{c} x_1 = 0 \\ x_2 = 1 \end{array} \Rightarrow \begin{array}{c} x_2 = 1 \\ x_1 = -5 \end{array}$$

$$\overrightarrow{s}_2 = \begin{pmatrix} -5 \\ 1 \\ 0 \\ 1 \end{pmatrix} \qquad \overrightarrow{s}_1 = \overline{N}(A) = span \left\{ \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

4.1.24 Suppose an *n* by *n* matrix is invertible: $AA^{-1} = I$. Then the first column of A^{-1} is orthogonal to the space spanned by which rows of *A*?

$$\begin{pmatrix} -\bar{a_1} - \\ \vdots \\ -\bar{a_n} - \end{pmatrix} \begin{pmatrix} 1 & 1 \\ \bar{a_1} - -\bar{a_n} \\ -\bar{a_n} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

4.2 - Projections

4.2.1 Project the vector **b** onto the line through **a**. Check that **e** is perpendicular to **a**:

4.2.11 Project **b** onto the column space of *A* by solving $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ and $\mathbf{p} = A \hat{\mathbf{x}}$:

(a)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$
(b) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$.

Find $\mathbf{e} = \mathbf{b} - \mathbf{p}$. It should be perpendicular to the columns of *A*.

$$\begin{array}{l} a) \quad A^{+} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad A^{+}A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \\ A^{+} \stackrel{+}{b} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}^{-1} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \quad \stackrel{+}{x} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{1} \end{pmatrix}^{-1} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \stackrel{+}{e} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \stackrel{-}{e} \stackrel{+}{e} \stackrel{-}{e} \begin{pmatrix} 3 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 0 \\ 4 \end{pmatrix} \stackrel{-}{e} \stackrel{$$

4.2.12 Compute the projection matrices P_1 and P_2 onto the column spaces in Problem 4.2.11. Verify that P_1 **b** gives the first projection \mathbf{p}_1 . Also verify $P_2^2 = P_2$.

4.2.13 (Quick and Recommended) Suppose *A* is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of A. What shape is the projection matrix P and what is P?

P=

4.2.17 (*Important*) If $P^2 = P$ show that $(I - P)^2 = I - P$. When P projects onto the column space of A, I - P projects onto the $1e^{f} + null part e$