Math 2270 - Assignment 8

Dylan Zwick
Fall 2012

Section 4.1 - 6, 7, 9, 21, 24
Section 4.2 - 1, 11, 12, 13, 17

4.1 - Orthogonality of the Four Subspaces

4.1.6 The system of equations $A \mathbf{x}=\mathbf{b}$ has no solution (they lead to $0=1$):

$$
\begin{aligned}
x+2 y+2 z & =5 \\
2 x+2 y+3 z & =5 \\
3 x+4 y+5 z & =9
\end{aligned}
$$

Find numbers y_{1}, y_{2}, y_{3} to multiply the equations so they add to $0=1$. You have found a vector \mathbf{y} in which subspace? Its dot product $\mathbf{y}^{T} \mathbf{b}$ is 1 , so no solution \mathbf{x}.
4.1.7 Every system with no solution is like the one in Problem 4.1.6. There are numbers y_{1}, \ldots, y_{m} that multiply the m equations so they add up to $0=1$. This is called Frendholm's Alternative:

Exactly one of these problems has a solution

$$
A \mathbf{x}=\mathbf{b} \quad \text { OR } \quad A^{T} \mathbf{y}=\mathbf{0} \quad \text { with } \quad \mathbf{y}^{T} \mathbf{b}=1
$$

If \mathbf{b} is not in the column space of A, it is not orthogonal to the nullspace of A^{T}. Multiply the equations $x_{1}-x_{2}=1$ and $x_{2}-x_{3}=1$ and $x_{1}-x_{3}=1$ by numbers y_{1}, y_{2}, y_{3} chosen so that the equations add up to $0=1$.
4.1.9 If $A^{T} A \mathbf{x}=\mathbf{0}$ then $A \mathbf{x}=\mathbf{0}$. Reason: $A \mathbf{x}$ is in the nullspace of A^{T} and also in the \qquad of A and those spaces are Conclusion: $A^{T} A$ has the same nullspace as A. This key fact is repeated in the next section.
4.1.21 Suppose \mathbf{S} is spanned by the vectors $(1,2,2,3)$ and (1,3,3,2). Find two vectors that span \mathbf{S}^{\perp}. This is the same as solving $A \mathbf{x}=\mathbf{0}$ for which A ?
4.1.24 Suppose an n by n matrix is invertible: $A A^{-1}=I$. Then the first column of A^{-1} is orthogonal to the space spanned by which rows of A?

4.2 - Projections

4.2.1 Project the vector \mathbf{b} onto the line through \mathbf{a}. Check that \mathbf{e} is perpendicular to a:
(a) $\mathbf{b}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right) \quad$ and $\quad \mathbf{a}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
(b) $\mathbf{b}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right) \quad$ and $\quad \mathbf{a}=\left(\begin{array}{c}-1 \\ -3 \\ -1\end{array}\right)$.
4.2.11 Project \mathbf{b} onto the column space of A by solving $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ and $\mathbf{p}=A \hat{\mathbf{x}}:$
(a) $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)$
and $\quad \mathbf{b}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$
(b) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}\right)$
and $\quad \mathbf{b}=\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right)$.

Find $\mathbf{e}=\mathbf{b}-\mathbf{p}$. It should be perpendicular to the columns of A.
4.2.12 Compute the projection matrices P_{1} and P_{2} onto the column spaces in Problem 4.2.11. Verify that $P_{1} \mathbf{b}$ gives the first projection \mathbf{p}_{1}. Also verify $P_{2}^{2}=P_{2}$.
4.2.13 (Quick and Recommended) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3 . Project $\mathbf{b}=(1,2,3,4)$ onto the column space of A. What shape is the projection matrix P and what is P ?
4.2.17 (Important) If $P^{2}=P$ show that $(I-P)^{2}=I-P$. When P projects onto the column space of $A, I-P$ projects onto the \qquad .

