Math 2270 - Assignment 8

Dylan Zwick

Fall 2012

Section 4.1 - 6, 7, 9, 21, 24 **Section 4.2** - 1, 11, 12, 13, 17

4.1 - Orthogonality of the Four Subspaces

4.1.6 The system of equations $A\mathbf{x} = \mathbf{b}$ has *no solution* (they lead to 0 = 1):

Find numbers y_1 , y_2 , y_3 to multiply the equations so they add to 0 = 1. You have found a vector **y** in which subspace? Its dot product $\mathbf{y}^T \mathbf{b}$ is 1, so no solution **x**. **4.1.7** Every system with no solution is like the one in Problem 4.1.6. There are numbers y_1, \ldots, y_m that multiply the *m* equations so they add up to 0 = 1. This is called **Frendholm's Alternative**:

Exactly one of these problems has a solution

 $A\mathbf{x} = \mathbf{b}$ OR $A^T\mathbf{y} = \mathbf{0}$ with $\mathbf{y}^T\mathbf{b} = 1$.

If **b** is not in the column space of *A*, it is not orthogonal to the nullspace of A^T . Multiply the equations $x_1 - x_2 = 1$ and $x_2 - x_3 = 1$ and $x_1 - x_3 = 1$ by numbers y_1, y_2, y_3 chosen so that the equations add up to 0 = 1.

4.1.9 If $A^T A \mathbf{x} = \mathbf{0}$ then $A \mathbf{x} = \mathbf{0}$. Reason: $A \mathbf{x}$ is in the nullspace of A^T and also in the ______ of A and those spaces are ______. *Conclusion:* $A^T A$ has the same nullspace as A. This key fact is repeated in the next section.

4.1.21 Suppose **S** is spanned by the vectors (1, 2, 2, 3) and (1, 3, 3, 2). Find two vectors that span **S**^{\perp}. This is the same as solving A**x** = **0** for which *A*?

4.1.24 Suppose an *n* by *n* matrix is invertible: $AA^{-1} = I$. Then the first column of A^{-1} is orthogonal to the space spanned by which rows of *A*?

4.2 - Projections

4.2.1 Project the vector **b** onto the line through **a**. Check that **e** is perpendicular to **a**:

(a)
$$\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
(b) $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ and $\mathbf{a} = \begin{pmatrix} -1 \\ -3 \\ -1 \end{pmatrix}$.

4.2.11 Project **b** onto the column space of *A* by solving $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ and $\mathbf{p} = A \hat{\mathbf{x}}$:

(a)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$
(b) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$.

Find $\mathbf{e} = \mathbf{b} - \mathbf{p}$. It should be perpendicular to the columns of *A*.

4.2.12 Compute the projection matrices P_1 and P_2 onto the column spaces in Problem 4.2.11. Verify that P_1 **b** gives the first projection \mathbf{p}_1 . Also verify $P_2^2 = P_2$.

4.2.13 (Quick and Recommended) Suppose *A* is the 4 by 4 identity matrix with its last column removed. *A* is 4 by 3. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of *A*. What shape is the projection matrix *P* and what is *P*?

4.2.17 (*Important*) If $P^2 = P$ show that $(I - P)^2 = I - P$. When P projects onto the column space of A, I - P projects onto the _____.