Math 2270 - Assignment 7

Dylan Zwick

Fall 2012

Section 3.5 -1, 2, 3, 20, 28
Section 3.6-1, 3, 5, 11, 24
3.5 -Independence, Basis, and Dimension
3.5.1 Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are independent but $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are dependent:

$$
\begin{array}{r}
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{v}_{4}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) . \\
c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}+c_{3} \vec{v}_{3}=\left(\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{2}+c_{3} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{array}
$$

So, $c_{3}=0$. If $c_{3}=0$ then $c_{2}=0$. If $c_{3}=c_{2}=0$ then $c_{1}=0$, so,

$$
C_{1} \vec{V}_{1}+C_{2} \vec{V}_{2}+C_{3} \vec{V}_{3}=0
$$

if and only if $c_{1}=c_{2}=c_{3}=0$, so, $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are linearly independent.

$$
\left(\begin{array}{c}
2 \\
3 \\
4
\end{array}\right)=(-1)\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)+(-1)\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)+4\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

So, $\vec{v}_{4}=-\vec{v}_{1}-\vec{v}_{2}+4 \vec{v}_{3}$ and therefore $\vec{V}_{1}, \vec{v}_{2}, \vec{V}_{3}, \vec{V}_{4}$ are linearly dependent.
3.5.2 (Recommended) Find the largest possible number of independent vectors among

$$
\begin{array}{lll}
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right) & \mathbf{v}_{2}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) & \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \\
\mathbf{v}_{4}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) & \mathbf{v}_{5}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) & \mathbf{v}_{6}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)
\end{array}
$$

From inspecting rows 2,3 , and 4 we see $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are independent.

$$
\begin{aligned}
& \vec{V}_{4}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)-\left(\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right)=\vec{V}_{2}-\vec{V}_{1} \\
& \vec{V}_{5}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)-\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
V_{3} \\
0 \\
0 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)-\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)=\vec{V}_{3}-\vec{V}_{2} \\
& \vec{V}_{6}=\left(\begin{array}{l}
0 \\
0
\end{array}\right.
\end{aligned}
$$

So, $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}, \vec{V}_{6}\right\}=\operatorname{span}\left\{\vec{V}_{1}, \vec{v}_{2}, \vec{V}_{3}\right\}$.
So, $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are a basin, and the answer is 3 .
3.5.3 Prove that if $a=0$ or $d=0$ or $f=0$ (3 cases), the columns of U are dependent:

$$
U=\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right)
$$

If $a=0$ column 1 is $\overrightarrow{0}$, and any set of vectors containing $\overrightarrow{0}$ is dependent

If $a \neq 0$ and $d=0$ then

$$
\frac{b}{a}\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
b \\
0 \\
0
\end{array}\right)
$$

So, the columns are dependent
If $a \neq 0$ and $d \neq 0$ then if $f=0$

$$
\left(\begin{array}{l}
c \\
e \\
0
\end{array}\right)=\frac{e}{d}\left(\begin{array}{l}
b \\
d \\
0
\end{array}\right)+\left(\frac{c}{a}-\frac{b e}{a d}\right)\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right)
$$

So, the columns are dependent.
3.5.20 Find a basis for the plane $x-2 y+3 z=0$ in \mathbb{R}^{3}. Then find a basis for the intersection if that plane with the $x y$ plane. Then find a basis for all vectors perpendicular to the plane.

The plane $x-2 y+3 z=0$ is the nullspare of $(1-23)$. So,

$$
\left(\begin{array}{lll}
1-2 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \quad \begin{aligned}
& y=1, z=0, x=2 \\
& z=1, y=0, x=-3
\end{aligned}
$$

Basis: $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right)$
Intersection with $z=0$. Want nullspare of

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{0}{0} \quad \begin{aligned}
& y=1, z=0, x=2 \\
& \text { Basis }\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Perpendicular to the plane is the nullspace of $\left(\begin{array}{ccc}2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right)$ which has basis $\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$.
3.5.28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero. Find a basis for the subspace whose rows also add to zero.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a & b & c \\
-a & -b & -c
\end{array}\right) \\
& \text { Basis: }\left(\begin{array}{ccc}
a & 0 & 0 \\
-a & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & b & 0 \\
0 & -b & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & c \\
0 & 0 & -c
\end{array}\right)
\end{aligned}
$$

Basis of subspace:

$$
\left(\begin{array}{ccc}
a & 0 & -a \\
-a & 0 & a
\end{array}\right),\left(\begin{array}{ccc}
0 & b & -b \\
0 & -b & b
\end{array}\right)
$$

3.6 - Dimension of the Four Subspaces
3.6.1 (a) If a 7 by 9 matrix has rank 5 , what are the dimensions of the four subspaces? What is the sum of all four dimensions?
(b) If a 3 by 4 matrix has rank 3 , where are its column space and left nullspace?
a)

$$
\begin{aligned}
& \operatorname{dim}(\vec{C}(A))=5 \\
& \operatorname{dim}\left(\vec{C}\left(A^{+}\right)\right)=5 \\
& \operatorname{dim}(\vec{N}(A))=9-5=4 \\
& \operatorname{dim}\left(\vec{N}\left(A^{+}\right)\right)=7-5=2 \\
& 5+5+4+2=16=7+9
\end{aligned}
$$

(b) Column space is a 3-dim subspace of \mathbb{R}^{3}, which must be \mathbb{R}^{3} itself. Left nullspare has dimension $3-3=0$, so must just be $\overrightarrow{0}$.
3.6.3 Find a basis for each of the four subspaces associated with A :

$$
\begin{aligned}
& A=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) . \\
& \vec{C}(A)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)\right\} \\
& \vec{C}\left(A^{\top}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right)\right\} \\
& \vec{N}(A)=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow x_{4}=0, x_{2}=0 \\
& \begin{array}{l}
\Rightarrow x_{4}=0, x_{2}=0 \\
x_{1}=0, x_{3}=1, x_{5}=0 \\
\Rightarrow x_{4}=0, x_{2}=-2 \\
x_{1}=0, x_{3}=0, x_{5}=1
\end{array} \quad \vec{N}(A)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{c}
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
2 \\
0 \\
-2 \\
1
\end{array}\right)\right\} \\
& \Rightarrow x_{4}=-2, x_{2}=2 \\
& \vec{N}\left(A^{\top}\right)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

3.6.5 If \mathbf{V} is the subspace spanned by $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$, find a matrix A that has \mathbf{V} as its row space. Find a matrix B that has \mathbf{V} as its nullspace.

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right) \quad \text { Easy! } \\
& \vec{N}(A) \Rightarrow\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & -1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{0}{0} \\
& x_{3}=1, x_{2}=-2, x_{1}=1 \quad \vec{N}(A)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\right.
\end{aligned}
$$

The rowspace and nullspare are orthogonal, So

$$
B=\left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right)
$$

3.6.11 (Important) A is an m by n matrix of rank r. Suppose there are right sides \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution.
(a) What are all inequalities ($<$ or \leq) that must be true between m, n and r ?
(b) How do you know that $A^{T} \mathbf{y}=0$ has solutions other than $\mathbf{y}=\mathbf{0}$?
a) A cannot have full row rank. So, $r<m$. In general we must have $r \leq n$. This is if.
b) If A does not have full row rank, then A^{\top} doer not have full column rank, and so the dimension of the nullspare of A^{\top} (the left nullspace of A) is positive.
3.6.24 (Important) $A^{T} \mathbf{y}=\mathbf{d}$ is solvable when \mathbf{d} is in which of the four subspaces? The solution y is unique when the left nullspare of A contains only the zero vector.

$$
\begin{aligned}
& A^{+} \vec{y}=\vec{d} \text { is solvable when } \vec{d} \text { is } \\
& \text { in the row space of } A \text {. }
\end{aligned}
$$

