Math 2270 - Assignment 7

Dylan Zwick

Fall 2012

Section 3.5 - 1, 2, 3, 20, 28 **Section 3.6** - 1, 3, 5, 11, 24

3.5 - Independence, Basis, and Dimension

3.5.1 Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are independent but $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are dependent:

$$\mathbf{v}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \quad \mathbf{v}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \quad \mathbf{v}_4 = \begin{pmatrix} 2\\3\\4 \end{pmatrix}.$$

3.5.2 (Recommended) Find the largest possible number of independent vectors among

$$\mathbf{v}_{1} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{v}_{2} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \qquad \mathbf{v}_{3} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$
$$\mathbf{v}_{4} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \qquad \mathbf{v}_{5} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \qquad \mathbf{v}_{6} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$$

3.5.3 Prove that if a = 0 or d = 0 or f = 0 (3 cases), the columns of U are dependent:

$$U = \left(\begin{array}{rrr} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{array}\right).$$

3.5.20 Find a basis for the plane x - 2y + 3z = 0 in \mathbb{R}^3 . Then find a basis for the intersection if that plane with the *xy* plane. Then find a basis for all vectors perpendicular to the plane.

3.5.28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero. Find a basis for the subspace whose rows also add to zero.

3.6 - Dimension of the Four Subspaces

- **3.6.1 (a)** If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces? What is the sum of all four dimensions?
 - (b) If a 3 by 4 matrix has rank 3, whare are its column space and left nullspace?

3.6.3 Find a basis for each of the four subspaces associated with *A*:

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

3.6.5 If **V** is the subspace spanned by $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, find a matrix *A* that has **V** as its row space. Find a matrix *B* that has **V** as its number of

nullspace.

- **3.6.11** (Important) *A* is an *m* by *n* matrix of rank *r*. Suppose there are right sides **b** for which $A\mathbf{x} = \mathbf{b}$ has *no solution*.
 - (a) What are all inequalities (< or \leq) that must be true between m, n and r?
 - (b) How do you know that $A^T \mathbf{y} = \mathbf{0}$ has solutions other than $\mathbf{y} = \mathbf{0}$?

3.6.24 (Important) $A^T \mathbf{y} = \mathbf{d}$ is solvable when \mathbf{d} is in which of the four subspaces? The solution \mathbf{y} is unique when the ______ contains only the zero vector.