Math 2270 - Assignment 7

Dylan Zwick
Fall 2012

Section 3.5-1, 2, 3, 20, 28
Section 3.6-1, 3, 5, 11, 24

3.5-Independence, Basis, and Dimension

3.5.1 Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are independent but $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are dependent:

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{v}_{2}=\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right) \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{v}_{4}=\left(\begin{array}{c}
2 \\
3 \\
4
\end{array}\right) .
$$

3.5.2 (Recommended) Find the largest possible number of independent vectors among

$$
\begin{array}{lll}
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right) & \mathbf{v}_{2}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) & \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \\
\mathbf{v}_{4}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) & \mathbf{v}_{5}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) & \mathbf{v}_{6}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)
\end{array}
$$

3.5.3 Prove that if $a=0$ or $d=0$ or $f=0$ (3 cases), the columns of U are dependent:

$$
U=\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right)
$$

3.5.20 Find a basis for the plane $x-2 y+3 z=0$ in \mathbb{R}^{3}. Then find a basis for the intersection if that plane with the $x y$ plane. Then find a basis for all vectors perpendicular to the plane.
3.5.28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero. Find a basis for the subspace whose rows also add to zero.

3.6 - Dimension of the Four Subspaces

3.6.1 (a) If a 7 by 9 matrix has rank 5 , what are the dimensions of the four subspaces? What is the sum of all four dimensions?
(b) If a 3 by 4 matrix has rank 3, whare are its column space and left nullspace?
3.6.3 Find a basis for each of the four subspaces associated with A :

$$
A=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

3.6.5 If \mathbf{V} is the subspace spanned by $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$, find a matrix A that has \mathbf{V} as its row space. Find a matrix B that has \mathbf{V} as its nullspace.
3.6.11 (Important) A is an m by n matrix of rank r. Suppose there are right sides \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution.
(a) What are all inequalities ($<$ or \leq) that must be true between m, n and r ?
(b) How do you know that $A^{T} \mathbf{y}=\mathbf{0}$ has solutions other than $\mathbf{y}=\mathbf{0}$?
3.6.24 (Important) $A^{T} \mathbf{y}=\mathbf{d}$ is solvable when \mathbf{d} is in which of the four subspaces? The solution y is unique when the \qquad contains only the zero vector.

