Math 2270 - Assignment 5

Dylan Zwick

Fall 2012

Section 3.1 -1, 2, 10, 20, 23
Section 3.2 -1, 2, 4, 18, 36

3.1-Spaces of Vectors

In the definition of a vector space, vector addition $\mathbf{x}+\mathbf{y}$ and scalar multiplication $c \times$ must obey the following eight rules:
(1) $x+y=y+x$
(2) $x+(y+z)=(x+y)+z$
(3) There is a unique "zero vector" such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ for all \mathbf{x}
(4) For each \mathbf{x} there is a unique vector $-\mathbf{x}$ such that $\mathbf{x}+(-\mathbf{x})=0$
(5) 1 times x equals x
(6) $\left(c_{1} c_{2}\right) \mathbf{x}=c_{1}\left(c_{2} \mathbf{x}\right)$
(7) $c(\mathbf{x}+\mathbf{y})=c \mathbf{x}+c \mathbf{y}$
(8) $\left(c_{1}+c_{2}\right) \mathbf{x}=c_{1} \mathbf{x}+c_{2} \mathbf{x}$.
3.1.1 Suppose $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)$ is defined to be $\left(x_{1}+y_{2}, x_{2}+y_{1}\right)$. With the usual multiplication $c \mathbf{x}=\left(c x_{1}, c x_{2}\right)$, which of the eight conditions are not satisfied?

$$
\begin{aligned}
\vec{x}+\vec{y} & =\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{2}, x_{2}+y_{1}\right) \\
\vec{y}+\vec{y} & =\left(y_{1}, y_{2}\right)+\left(x_{1}, x_{2}\right)=\left(y_{1}+x_{2}, y_{2}+x_{1}\right) \\
& \vec{x}+\vec{y} \neq \vec{y} * \vec{*}
\end{aligned}
$$

So, condition 1 is not satisfied.

$$
\begin{aligned}
\vec{x} & +(\vec{y}+\vec{z})=\left(x_{1}, x_{2}\right)+\left(\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)\right) \\
& =\left(x_{1}, x_{2}\right)+\left(y_{1}+z_{2}, y_{2}+z_{1}\right) \\
& =\left(x_{1}+y_{2}+z_{1}, x_{2}+y_{1}+z_{2}\right) \\
(\vec{x}+\vec{y})+\vec{z} & =\left(x_{1}+y_{2}, x_{2}+y_{1}\right)+\left(z_{1}, z_{2}\right) \\
& =\left(x_{1}+y_{2}+z_{2}, x_{2}+y_{1}+z_{1}\right) \neq \vec{x}+(\vec{y}+\vec{z})
\end{aligned}
$$

So, condition 2 is not satisfied.
3.1.2 Suppose the multiplication $c x$ is defined to produce $\left(c x_{1}, 0\right)$ instead of $\left(c x_{1}, c x_{2}\right)$. With the usual addition in \mathbb{R}^{2} are the eight conditions satisfied?

$$
1 \vec{x}=1\left(x_{1}, x_{2}\right)=\left(1 x_{1}, 0\right)=\left(x_{1}, 0\right)
$$

So, condition S is not satisfied.
The rest are satisfied.
3.1.10 Which of the following subsets of \mathbb{R}^{3} are actually subspaces?
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{2}$.
(b) The plane of vectors with $b_{1}=1$.
(c) The vectors with $b_{1} b_{2} b_{3}=0$.
(d) All linear combinations of $\mathbf{v}=(1,4,0)$ and $\mathbf{w}=(2,2,2)$.
(e) All vectors that satisfy $b_{1}+b_{2}+b_{3}=0$.
(f) All vectors with $b_{1} \leq b_{2} \leq b_{3}$.
a) Subspace
b) Not a subspace
C) Not a subspace
d) Subspace
e) Subspace
f) Not a subspace.
3.1.20 For which right sides (find a condition on b_{1}, b_{2}, b_{3}) are these systems solvable?
(a) $\left(\begin{array}{ccc}1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
(b) $\left(\begin{array}{cc}1 & 4 \\ 2 & 9 \\ -1 & -4\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$.
a) $\left(\begin{array}{cccc}1 & 4 & 2 & b_{1} \\ 2 & 8 & 4 & b_{2} \\ -1 & -4 & -2 & b_{3}\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 4 & 2 & b_{1} \\ 0 & 0 & 0 & b_{2}-2 b_{1} \\ 0 & 0 & 0 & b_{1}+b_{3}\end{array}\right)$

So, $b_{2}=2 b_{1}$ and $b_{3}=-b_{1}$
b)

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 4 & b_{1} \\
2 & a & b_{2} \\
-1 & -4 & b_{3}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 4 & b_{1} \\
0 & 1 & b_{2}-2 b_{1} \\
0 & 0 & b_{1}+b_{3}
\end{array}\right) \\
& b_{3}=-b_{1}
\end{aligned}
$$

3.1.23 If we -add an extra column \mathbf{b} to a matrix A, then the column space gets larger unless . Give an example where the column (l. space gets larger and an example where it doesn't. Why is $A \mathbf{x}=\mathbf{b}$ \vec{b} is in solvable exactly when the column space doesn't ger larger - it is the same for A and $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$?
the column space of

Example where the column space gets larger:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) \quad \vec{b}=\binom{0}{1}
$$

Example where the column space does not get larger:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \vec{b}=\binom{2}{0}
$$

The possible outputs of $A \vec{x}$ are exactly those vectors in the column space of A. So, if $A \vec{x}=\vec{b}$ is solvable, then \vec{b} is in the column spare of A, and the column spare does not get larger when we add \vec{b}.
3.2 - The Nullspace of A : Solving $A \mathbf{x}=\mathbf{b}$
3.2.1 Reduce the matrices to their ordinary echelon forms U :
(a) $A=\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3\end{array}\right)$
(b) $B=\left(\begin{array}{ccc}2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8\end{array}\right)$.
a)
a) $\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3\end{array}\right) \xrightarrow{\substack{\text { subtract } \\ \text { row } \\ \text { row } \\ \text { from }}} \rightarrow\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 3\end{array}\right)$
subtract row
from row 3 $\left(\begin{array}{llll}1 & 2 & 4 & 6\end{array}\right)$

$$
\rightarrow\left(\begin{array}{lllll}
1 & 2 & 2 & 4 & 6 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

3.2.2 For the matrices in Problem 3.2.1, find a special solution for each free variable. (Set the free variable equal to 1 . Set the other free variables equal to zero.)
a)
pivot columns are columns q and 3. Free columns are columns $2,4,9$. So, free variables are
b)

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 4 & 2 \\
0 & 4 & 4 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \begin{array}{c}
\text { Pivot variables: } x_{1}, \\
\text { Free variable: } x_{3}
\end{array} \\
& x_{3}=1, x_{2}=-1, x_{1}=1 \quad 8 \quad \vec{S}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Pivot variables: x_{1}, x_{2}

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 2 & 2 & 4 & 6 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \\
& x_{2}, x_{4}, x_{5} \text {. } \\
& x_{2}=1, x_{4}=0, x_{5}=0 . \\
& x_{3}=0 \quad x_{1}=-2 \quad \vec{S}_{1}=\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right) \\
& x_{4}=1, x_{2}=0, x_{5}=0 \\
& \begin{array}{ccc}
x_{3}=-2 & x_{2}-0, x_{5}=0 & \stackrel{\rightharpoonup}{s_{2}}=\left(\begin{array}{c}
0 \\
0 \\
-2 \\
1 \\
0
\end{array}\right)
\end{array} \\
& x_{5}=1, \quad x_{2}=0, \quad x_{4}=0 \\
& y_{3}=-3 \quad x_{1}=0 \\
& (242)\binom{x_{1}}{2} \text { Pivot variables }
\end{aligned}
$$

3.2.4 By further row operations on each U in Problem 3.2.1, find the reduce echelon form R. True or false: The nullspace of R equals the nullspace of U.
a) $\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \xrightarrow{\substack{\text { subtract } \\ \text { form row }}}\left(\begin{array}{lllll}1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$

True. In general $\vec{N}(A)=\vec{N}(U)=\vec{N}(R)$.
3.2.18 The plane $x-3 y-z=12$ is parallel to the plane $x-3 y-z=0$ in Problem 3.2.17. One particular point on this plane is (12, 0, 0). All points on the plan have the form (fill in the first components)

$$
\begin{aligned}
& \quad\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
12 \\
0 \\
0
\end{array}\right)+y\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) . \\
& x=12+3 y+z
\end{aligned}
$$

3.2.36 How is the nullspace $\mathbf{N}(C)$ related to the spaces $\mathbf{N}(A)$ and $\mathbf{N}(B)$, if

$$
C=\binom{A}{B} ?
$$

$$
\left(\vec{x}=\binom{A}{B} \vec{x}=\binom{A \vec{x}}{B \vec{x}}=\begin{array}{l}
\overrightarrow{0} \quad \text { if and only } \\
\text { if } A \vec{x}=B \vec{x}=\vec{O} .
\end{array}\right.
$$

$$
\begin{gathered}
\text { So, } \vec{N}(C) \text { is all vectors in both } \\
\vec{N}(A) \text { and } \vec{N}(B) \text {. Written mathematically } \\
\vec{N}(C)=\vec{N}(A) \cap \vec{N}(B)
\end{gathered}
$$

$$
\begin{aligned}
& \text { ert } \quad r=0
\end{aligned}
$$

(

