
Math 2270 - Assignment 5

Dylan Zwick

Fall 2012

Section 3.1 - 1, 2, 10, 20, 23
Section 3.2 - 1, 2, 4, 18, 36

3.1 - Spaces of Vectors

In the definition of a vector space, vector addition x + y and scalar multi
plication cx must obey the following eight rules:

(1) x+y=y+x

(2) x+(y+z)=(x+y)+z

(3) There is a unique “zero vector” such that x + 0 = x for all x

(4) For each x there is a unique vector —x such that x + (—x) = 0

(5) 1 times x equals x

(6) (cic2)x =c1(c2x)

(7) c(x+y)=cx+cy

(8) (ci + c2)x = c1x + c2x.
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3.1.1 Suppose (xi, x2) + (yi, y2) is defined to be (x + Y2, x2 + yr). With the
usual multiplication cx = (cu, cx2),which of the eight conditions are
not satisfied?
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3.1.2 Suppose the multiplication cx is defined to produce (cxi, 0) instead
of (cxi, cx2). With the usual addition in 1R2 are the eight conditions
satisfied?
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3.1.10 Which of the following subsets of R are actually subspaces?

(a) The plane of vectors (b1, b2, b3) with b1 = b2.

(b) The plane of vectors with b1 = 1.

(c) The vectors withb1b2b3 = 0.

(d) All linear combinations of v = (1.4. 0) and w = (2. 2, 2).

(e) All vectors that satisfy b1 + b2 + b3 = 0.

(f) All vectors with b1 < b2 < b3.
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3.1.20 For which right sides (find a condition on b1, b2, b3) are these systems
solvable?
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3.1.23 d an extra column b to a matrix A, then the column space

/
gets larger unless

_____________.

Give an example where the column
space gets larger and an example where it doesn’t. Why is Ax = b
solvable exactly when the column space doesn’t ger larger - it is the
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3.2 - The Nulispace of A: Solving Ax = b

3.2.1 Reduce the matrices to their ordinary echelon forms U:
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3.2.2 For the matrices in Problem 3.2.1, find a special solution for each free
variable. (Set the free variable equal to 1. Set the other free variables
equal to zero.)
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3.2.4 By further row operations on each U in Problem 3.2.1, find the re
duced echelon form R. True or false: The nullspace of R equals the
nullspace of U.
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3.2.18 The plane x
—

— z = 12 is parallel to the plane x
—

— z = 0
in Problem 3.2.17. One particular point on this plane is (12, 0. 0). All
points on the plan have the form (fill in the first components)
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3.2.36 How is the nulispace N(G) related to the spaces N(A) and N(B), if
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