Math 2270 - Assignment 5

Dylan Zwick

Fall 2012

Section 3.1 - 1, 2, 10, 20, 23
Section 3.2-1, 2, 4, 18, 36

3.1 - Spaces of Vectors

In the definition of a vector space, vector addition $\mathbf{x}+\mathbf{y}$ and scalar multiplication $c \mathbf{x}$ must obey the following eight rules:
(1) $x+y=y+x$
(2) $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}$
(3) There is a unique "zero vector" such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ for all \mathbf{x}
(4) For each \mathbf{x} there is a unique vector $-\mathbf{x}$ such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$
(5) 1 times x equals x
(6) $\left(c_{1} c_{2}\right) \mathbf{x}=c_{1}\left(c_{2} \mathbf{x}\right)$
(7) $c(\mathbf{x}+\mathbf{y})=c \mathbf{x}+c \mathbf{y}$
(8) $\left(c_{1}+c_{2}\right) \mathbf{x}=c_{1} \mathbf{x}+c_{2} \mathbf{x}$.
3.1.1 Suppose $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)$ is defined to be $\left(x_{1}+y_{2}, x_{2}+y_{1}\right)$. With the usual multiplication $c \mathbf{x}=\left(c x_{1}, c x_{2}\right)$, which of the eight conditions are not satisfied?
3.1.2 Suppose the multiplication $c \mathbf{x}$ is defined to produce $\left(c x_{1}, 0\right)$ instead of $\left(c x_{1}, c x_{2}\right)$. With the usual addition in \mathbb{R}^{2} are the eight conditions satisfied?
3.1.10 Which of the following subsets of \mathbb{R}^{3} are actually subspaces?
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{2}$.
(b) The plane of vectors with $b_{1}=1$.
(c) The vectors with $b_{1} b_{2} b_{3}=0$.
(d) All linear combinations of $\mathbf{v}=(1,4,0)$ and $\mathbf{w}=(2,2,2)$.
(e) All vectors that satisfy $b_{1}+b_{2}+b_{3}=0$.
(f) All vectors with $b_{1} \leq b_{2} \leq b_{3}$.
3.1.20 For which right sides (find a condition on b_{1}, b_{2}, b_{3}) are these systems solvable?
(a) $\left(\begin{array}{ccc}1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
(b) $\left(\begin{array}{cc}1 & 4 \\ 2 & 9 \\ -1 & -4\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$.
3.1.23 If we add an extra column \mathbf{b} to a matrix A, then the column space gets larger unless \qquad . Give an example where the column space gets larger and an example where it doesn't. Why is $A \mathbf{x}=\mathbf{b}$ solvable exactly when the column space doesn't ger larger - it is the same for A and $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$?

3.2 - The Nullspace of A : Solving $A \mathbf{x}=\mathbf{b}$

3.2.1 Reduce the matrices to their ordinary echelon forms U :
(a) $A=\left(\begin{array}{lllll}1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3\end{array}\right)$
(b) $B=\left(\begin{array}{lll}2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8\end{array}\right)$.
3.2.2 For the matrices in Problem 3.2.1, find a special solution for each free variable. (Set the free variable equal to 1 . Set the other free variables equal to zero.)
3.2.4 By further row operations on each U in Problem 3.2.1, find the reduced echelon form R. True or false: The nullspace of R equals the nullspace of U.
3.2.18 The plane $x-3 y-z=12$ is parallel to the plane $x-3 y-z=0$ in Problem 3.2.17. One particular point on this plane is $(12,0,0)$. All points on the plan have the form (fill in the first components)

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{0}{0}+y\binom{1}{0}+z\binom{0}{1} .
$$

3.2.36 How is the nullspace $\mathbf{N}(C)$ related to the spaces $\mathbf{N}(A)$ and $\mathbf{N}(B)$, if $C=\binom{A}{B}$?

