Math 2270 - Assignment 5

Dylan Zwick

Fall 2012

Section 3.1 - 1, 2, 10, 20, 23 **Section 3.2** - 1, 2, 4, 18, 36

3.1 - Spaces of Vectors

In the definition of a vector space, vector addition $\mathbf{x} + \mathbf{y}$ and scalar multiplication $c\mathbf{x}$ must obey the following eight rules:

- (1) x + y = y + x
- (2) x + (y + z) = (x + y) + z
- (3) There is a unique "zero vector" such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all \mathbf{x}
- (4) For each **x** there is a unique vector $-\mathbf{x}$ such that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$
- (5) 1 times \mathbf{x} equals \mathbf{x}
- (6) $(c_1c_2)\mathbf{x} = c_1(c_2\mathbf{x})$
- (7) c(x + y) = cx + cy
- (8) $(c_1 + c_2)\mathbf{x} = c_1\mathbf{x} + c_2\mathbf{x}$.

3.1.1 Suppose $(x_1, x_2) + (y_1, y_2)$ is defined to be $(x_1 + y_2, x_2 + y_1)$. With the usual multiplication $c\mathbf{x} = (cx_1, cx_2)$, which of the eight conditions are not satisfied?

3.1.2 Suppose the multiplication $c\mathbf{x}$ is defined to produce $(cx_1, 0)$ instead of (cx_1, cx_2) . With the usual addition in \mathbb{R}^2 are the eight conditions satisfied?

3.1.10 Which of the following subsets of \mathbb{R}^3 are actually subspaces?

- (a) The plane of vectors (b_1, b_2, b_3) with $b_1 = b_2$.
- (b) The plane of vectors with $b_1 = 1$.
- (c) The vectors with $b_1b_2b_3 = 0$.
- (d) All linear combinations of $\mathbf{v} = (1, 4, 0)$ and $\mathbf{w} = (2, 2, 2)$.
- (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
- (f) All vectors with $b_1 \leq b_2 \leq b_3$.

3.1.20 For which right sides (find a condition on b_1, b_2, b_3) are these systems solvable?

(a)
$$\begin{pmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

(b) $\begin{pmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

3.1.23 If we add an extra column **b** to a matrix *A*, then the column space gets larger unless ______. Give an example where the column space gets larger and an example where it doesn't. Why is $A\mathbf{x} = \mathbf{b}$ solvable exactly when the column space *doesn't* ger larger - it is the same for *A* and $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$?

3.2 - The Nullspace of *A*: Solving *A***x** = **b**

3.2.1 Reduce the matrices to their ordinary echelon forms *U*:

(a)
$$A = \begin{pmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix}$$

(b) $B = \begin{pmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{pmatrix}$.

3.2.2 For the matrices in Problem 3.2.1, find a special solution for each free variable. (Set the free variable equal to 1. Set the other free variables equal to zero.)

3.2.4 By further row operations on each U in Problem 3.2.1, find the reduced echelon form R. *True or false*: The nullspace of R equals the nullspace of U.

3.2.18 The plane x - 3y - z = 12 is parallel to the plane x - 3y - z = 0 in Problem 3.2.17. One particular point on this plane is (12, 0, 0). All points on the plan have the form (fill in the first components)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

3.2.36 How is the nullspace $\mathbf{N}(C)$ related to the spaces $\mathbf{N}(A)$ and $\mathbf{N}(B)$, if $C = \begin{pmatrix} A \\ B \end{pmatrix}$?